Intelligent optimisation for multi-objectives flexible manufacturing cells formation

  • Muhammad Ridwan Andi Purnomo Universitas Islam Indonesia https://orcid.org/0000-0002-9404-0016
  • Imam Djati Widodo Universitas Islam Indonesia
  • Zainudin Zukhri Universitas Islam Indonesia
Abstract views: 54 , PDF downloads: 70
Keywords: Flexible manufacturing cells formation, Genetic algorithms, Multi-objectives intelligent optimisation, Particle swarm optimisation

Abstract

The primary objective of conventional manufacturing cell formation typically uses grouping efficiency and efficacy measurement to reduce voids and exceptional parts. This objective frequently leads to extreme solutions, such as the persistently significant workload disparity among the manu­facturing cells. It will have a detrimental psychological impact on operators who work in each formed manufacturing cell. The complexity of the problem increases when there is a requirement to finish all parts before the midday break, at which point the formed manufacturing cells can proceed with the following production batch after the break. This research examines the formation of manufacturing cells using two widely recognized intelligent optimization techniques: genetic algorithm (G.A.) and particle swarm optimisation (PSO). The discussed manufacturing system has flexible machines, allowing each part to have multiple production routing options. The optimisation process involved addressing four simultaneous objectives: enhancing the efficiency and efficacy of the manufacturing cells, minimizing the deviation of manufacturing cells working time with the allocated working hours, which is prior to the midday break, and ensuring a balanced workload for the formed manufacturing cells. The optimisation results demonstrate that the G.A. outperforms the PSO method and is capable of providing manufacturing cell formation solutions with an efficiency level of 0.86, efficacy level as high as 0.64, achieving a minimum lateness of only 24 minutes from the completion target before midday break and a maximum difference in workload as low as 49 minutes.

Downloads

Download data is not yet available.

References

S. Liu, Y. Lu, J. Li, X. Shen, X. Sun, and J. Bao, ‘A blockchain-based interactive approach between digital twin-based manufacturing systems’, Comput. Ind. Eng., vol. 175, p. 108827, Jan. 2023, doi: https://doi.org/10.1016/j.cie.2022.108827.

T. Qu, S. P. Lei, Z. Z. Wang, D. X. Nie, X. Chen, and G. Q. Huang, ‘IoT-based real-time production logistics synchronization system under smart cloud manufacturing’, Int. J. Adv. Manuf. Technol., vol. 84, no. 1–4, pp. 147–164, Apr. 2016, doi: https://doi.org/10.1007/s00170-015-7220-1.

Q. Lin, P. Zheng, Y. Zhang, L. Xia, Z. Zhang, and J. Liang, ‘Establishing a dynamic and static knowledge model of the manufacturing cell management system: An active push approach’, Expert Syst. Appl., vol. 243, p. 122713, Jun. 2024, doi: https://doi.org/10.1016/j.eswa.2023.122713.

A. Ozolins, ‘A new exact algorithm for no-wait job shop problem to minimize makespan’, Oper. Res., vol. 20, no. 4, pp. 2333–2363, Dec. 2020, doi: https://doi.org/10.1007/s12351-018-0414-1.

W. Torres-Tapia, J. R. Montoya-Torres, J. Ruiz-Meza, and S. Belmokhtar-Berraf, ‘A Matheuristic based on Ant Colony System for the Combined Flexible Jobshop Scheduling and Vehicle Routing Problem*’, IFAC-PapersOnLine, vol. 55, no. 10, pp. 1613–1618, 2022, doi: https://doi.org/10.1016/j.ifacol.2022.09.621.

K.-C. Ying and S.-W. Lin, ‘Minimizing total completion time in the no-wait jobshop scheduling problem using a backtracking metaheuristic’, Comput. Ind. Eng., vol. 169, p. 108238, Jul. 2022, doi: https://doi.org/10.1016/j.cie.2022.108238.

J. Chen, H. Zhang, Q. Chen, N. Mao, and J. Wang, ‘Performance analysis of flexible flow shop with parallel manufacturing cells’, Comput. Ind. Eng., vol. 173, p. 108739, Nov. 2022, doi: https://doi.org/10.1016/j.cie.2022.108739.

Y. Dan, G. Liu, C. Mao, K. Li, and P. Xu, ‘Flowshop scheduling optimization for multi-shift precast production with on-time delivery’, Eng. Appl. Artif. Intell., vol. 127, p. 107163, Jan. 2024, doi: https://doi.org/10.1016/j.engappai.2023.107163.

C. Wang, Q.-K. Pan, and X.-L. Jing, ‘An effective adaptive iterated greedy algorithm for a cascaded flowshop joint scheduling problem’, Expert Syst. Appl., vol. 238, p. 121856, Mar. 2024, doi: https://doi.org/10.1016/j.eswa.2023.121856.

L. Cheng, Q. Tang, L. Zhang, and C. Yu, ‘Scheduling flexible manufacturing cell with no-idle flow-lines and job-shop via Q-learning-based genetic algorithm’, Comput. Ind. Eng., vol. 169, p. 108293, Jul. 2022, doi: https://doi.org/10.1016/j.cie.2022.108293.

M. Rafiee, V. Kayvanfar, A. Mohammadi, and F. Werner, ‘A robust optimization approach for a cellular manufacturing system considering skill-leveled operators and multi-functional machines’, Appl. Math. Model., vol. 107, pp. 379–397, Jul. 2022, doi: https://doi.org/10.1016/j.apm.2022.02.028.

R. G. S. Pinheiro, I. C. Martins, F. Protti, L. S. Ochi, L. G. Simonetti, and A. Subramanian, ‘On solving manufacturing cell formation via Bicluster Editing’, Eur. J. Oper. Res., vol. 254, no. 3, pp. 769–779, Nov. 2016, doi: https://doi.org/10.1016/j.ejor.2016.05.010.

A. R. Pitombeira Neto and E. V. Gonçalves Filho, ‘A simulation-based evolutionary multiobjective approach to manufacturing cell formation’, Comput. Ind. Eng., vol. 59, no. 1, pp. 64–74, Aug. 2010, doi: https://doi.org/10.1016/j.cie.2010.02.017.

S. Oliveira, J. F. F. Ribeiro, and S. C. Seok, ‘A spectral clustering algorithm for manufacturing cell formation’, Comput. Ind. Eng., vol. 57, no. 3, pp. 1008–1014, Oct. 2009, doi: https://doi.org/10.1016/j.cie.2009.04.008.

B. R. Sarker, ‘Measures of grouping efficiency in cellular manufacturing systems’, Eur. J. Oper. Res., vol. 130, no. 3, pp. 588–611, May 2001, doi: https://doi.org/10.1016/S0377-2217(99)00419-1.

M. P. Chandrasekharan and R. Rajagopalan, ‘An ideal seed non-hierarchical clustering algorithm for cellular manufacturing’, Int. J. Prod. Res., vol. 24, no. 2, pp. 451–463, Mar. 1986, doi: https://doi.org/10.1080/00207548608919741.

C. . Kumar and M. P. Chandrasekharan, ‘Grouping efficacy: a quantitative criterion for goodness of block diagonal forms of binary matrices in group technology’, Int. J. Prod. Res., vol. 28, no. 2, pp. 233–243, Feb. 1990, doi: https://doi.org/10.1080/00207549008942706.

S. Kumar and R. K. Sharma, ‘Development of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method’, J. Ind. Eng. Int., vol. 11, no. 1, pp. 87–100, Mar. 2015, doi: https://doi.org/10.1007/s40092-014-0093-3.

C. Mejia-Moncayo, A. E. Rojas, J.-P. Kenne, and L. A. Hof, ‘An ant approach to define product families and remanufacturing cells’, IFAC-PapersOnLine, vol. 55, no. 10, pp. 73–78, 2022, doi: https://doi.org/10.1016/j.ifacol.2022.09.370.

I. Bychkov and M. Batsyn, ‘An efficient exact model for the cell formation problem with a variable number of production cells’, Comput. Oper. Res., vol. 91, pp. 112–120, Mar. 2018, doi: https://doi.org/10.1016/j.cor.2017.11.009.

C. R. Shiyas and V. Madhusudanan Pillai, ‘A mathematical programming model for manufacturing cell formation to develop multiple configurations’, J. Manuf. Syst., vol. 33, no. 1, pp. 149–158, Jan. 2014, doi: https://doi.org/10.1016/j.jmsy.2013.10.002.

L. E. Agustín-Blas, S. Salcedo-Sanz, E. G. Ortiz-García, A. Portilla-Figueras, Á. M. Pérez-Bellido, and S. Jiménez-Fernández, ‘Team formation based on group technology: A hybrid grouping genetic algorithm approach’, Comput. Oper. Res., vol. 38, no. 2, pp. 484–495, Feb. 2011, doi: https://doi.org/10.1016/j.cor.2010.07.006.

Y. Zhou, G. Zhou, and C. Zhang, ‘An Optimal Operation Control Framework for Digital Twin Manufacturing Cell’, Procedia CIRP, vol. 118, pp. 336–341, 2023, doi: https://doi.org/10.1016/j.procir.2023.06.058.

E. Ostrosi and A.-J. Fougères, ‘Intelligent virtual manufacturing cell formation in cloud-based design and manufacturing’, Eng. Appl. Artif. Intell., vol. 76, pp. 80–95, Nov. 2018, doi: https://doi.org/10.1016/j.engappai.2018.08.012.

R. Sudhakara Pandian and S. S. Mahapatra, ‘Manufacturing cell formation with production data using neural networks’, Comput. Ind. Eng., vol. 56, no. 4, pp. 1340–1347, May 2009, doi: https://doi.org/10.1016/j.cie.2008.08.003.

S. Farboodi, M. M. Paydar, and A. Nemati, ‘Designing a virtual cellular manufacturing system with route selection and workers’ considerations: A multi-objective robust possibilistic model’, Expert Syst. Appl., vol. 238, no. 4, p. 122263, Mar. 2024, doi: https://doi.org/10.1016/j.eswa.2023.122263.

N. Singh and D. Rajamani, Cellular Manufacturing Systems: design, planning and control. Boston, MA: Springer US, 1996, doi: https://doi.org/10.1007/978-1-4613-1187-4.

X. Sun, W. Shen, and B. Vogel-Heuser, ‘A hybrid genetic algorithm for distributed hybrid blocking flowshop scheduling problem’, J. Manuf. Syst., vol. 71, pp. 390–405, Dec. 2023, doi: https://doi.org/10.1016/j.jmsy.2023.09.017.

K. Shen, T. De Pessemier, L. Martens, and W. Joseph, ‘A parallel genetic algorithm for multi-objective flexible flowshop scheduling in pasta manufacturing’, Comput. Ind. Eng., vol. 161, p. 107659, Nov. 2021, doi: https://doi.org/10.1016/j.cie.2021.107659.

W.-H. Wu, W.-H. Wu, J.-C. Chen, W.-C. Lin, J. Wu, and C.-C. Wu, ‘A heuristic-based genetic algorithm for the two-machine flowshop scheduling with learning consideration’, J. Manuf. Syst., vol. 35, pp. 223–233, Apr. 2015, doi: https://doi.org/10.1016/j.jmsy.2015.02.002.

R. Motahari, Z. Alavifar, A. Zareh Andaryan, M. Chipulu, and M. Saberi, ‘A multi-objective linear programming model for scheduling part families and designing a group layout in cellular manufacturing systems’, Comput. Oper. Res., vol. 151, p. 106090, Mar. 2023, doi: https://doi.org/10.1016/j.cor.2022.106090.

E. A. Elsayed and T. O. Boucher, Analysis and Control of Production Systems. Prentice-Hall, 1985, [Online]. Available: https://books.google.co.id/books?id=ZkexAAAAIAAJ.

M. Gen and R. Cheng, Genetic Algorithms and Engineering Design. Wiley, 1996, doi: https://doi.org/10.1002/9780470172254.

PlumX Metrics

Published
2024-06-04
How to Cite
[1]
M. R. A. Purnomo, I. D. Widodo, and Z. Zukhri, “Intelligent optimisation for multi-objectives flexible manufacturing cells formation”, j. sist. manaj. ind., vol. 8, no. 1, pp. 11-21, Jun. 2024.
Section
Research Article