A compromise-based MADM approach for prioritizing failures: Integrating the RADAR method within the FMEA framework

Authors

DOI:

https://doi.org/10.30656/jsmi.v8i2.9283

Keywords:

MADM, Ranking, RADAR, FMEA, Automotive industry

Abstract

Multi-Attribute Decision-Making (MADM) methods are essential in decision-making processes, particularly in solving problems related to ranking and classifying alternatives. Among the MADM methods frequently utilized in the literature for ranking alternatives are distance-based or compromise-based methods. These methods have been widely applied for decades, with ongoing development leading to new approaches. One such approach is RAnking, based on the Distances And Range (RADAR) method. This novel distance-based method evaluates alternatives by considering their distance relative to the best and worst alternative values for a given criterion and the range between them. This paper applies the RADAR method to rank failure modes identified through a standard Failure Modes and Effects Analysis (FMEA) in an automotive industry company that produces rubber and plastic products. The results obtained from the RADAR method are compared with those derived from the traditional Risk Priority Number (RPN) approach. The comparison demonstrates that the RADAR method provides more distinct rankings, reducing the occurrence of ties between alternatives and thus offering a more nuanced and reliable decision-making tool in the context of failure mode prioritization.

Downloads

Download data is not yet available.

References

E. K. Zavadskas, Z. Turskis, and S. Kildienė, 'State of art surveys of overviews on MCDM/MADM methods', Technol. Econ. Dev. Econ., vol. 20, no. 1, pp. 165–179, Mar. 2014, doi: https://doi.org/10.3846/20294913.2014.892037.

E. Triantaphyllou, B. Shu, S. Nieto Sanchez, and T. Ray, 'Multicriteria decision making: an operations research approach', Encycl. Electr. Electron. Eng., vol. 15, no. 1998, pp. 175–186, 1998, [Online]. Available: https://bit.csc.lsu.edu/trianta/EditedBook_CHAPTERS/EEEE1.pdf

E. Triantaphyllou, Multicriteria Decision Making Methods: A Comparative Study, Multi-Crit., vol. 44. in Applied Optimization, vol. 44. Boston, MA, MA.: Springer US, 2000. doi: https://doi.org/10.1007/978-1-4757-3157-6.

C. Kahraman, S. C. Onar, and B. Oztaysi, 'Fuzzy Multicriteria Decision-Making: A Literature Review', Int. J. Comput. Intell. Syst., vol. 8, no. 4, p. 637, 2015, doi: https://doi.org/10.1080/18756891.2015.1046325.

M. Stojčić, E. K. Zavadskas, D. Pamučar, Ž. Stević, and A. Mardani, 'Application of MCDM Methods in Sustainability Engineering: A Literature Review 2008–2018', Symmetry (Basel)., vol. 11, no. 3, p. 350, Mar. 2019, doi: https://doi.org/10.3390/sym11030350.

S. H. Zolfani, H. Hasheminasab, A. E. Torkayesh, E. K. Zavadskas, and A. Derakhti, 'A Literature Review of MADM Applications for Site Selection Problems — One Decade Review from 2011 to 2020', Int. J. Inf. Technol. Decis. Mak., vol. 21, no. 01, pp. 7–57, Jan. 2022, doi: https://doi.org/10.1142/S0219622021300019.

M. Shafiee, 'Maintenance strategy selection problem: an MCDM overview', J. Qual. Maint. Eng., vol. 21, no. 4, pp. 378–402, Oct. 2015, doi: https://doi.org/10.1108/JQME-09-2013-0063.

P. Chowdhury and S. K. Paul, 'Applications of MCDM methods in research on corporate sustainability', Manag. Environ. Qual. An Int. J., vol. 31, no. 2, pp. 385–405, Feb. 2020, doi: https://doi.org/10.1108/MEQ-12-2019-0284.

A. I. Marqués, V. García, and J. S. Sánchez, 'Ranking-based MCDM models in financial management applications: analysis and emerging challenges', Prog. Artif. Intell., vol. 9, no. 3, pp. 171–193, Sep. 2020, doi: https://doi.org/10.1007/s13748-020-00207-1.

E. K. Zavadskas and Z. Turskis, 'Multiple Criteria Decision Making (MCDM) Methods in Economics: An Overview', Technol. Econ. Dev. Econ., vol. 17, no. 2, pp. 397–427, Jun. 2011, doi: https://doi.org/10.3846/20294913.2011.593291.

J. M. Sánchez-Lozano, J. Teruel-Solano, P. L. Soto-Elvira, and M. Socorro García-Cascales, 'Geographical Information Systems (GIS) and Multicriteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain', Renew. Sustain. Energy Rev., vol. 24, pp. 544–556, Aug. 2013, doi: https://doi.org/10.1016/j.rser.2013.03.019.

L. Duckstein, A. Tecle, H. P. Nachnebel, and B. F. Hobbs, 'Multicriterion Analysis of Hydropower Operation', J. Energy Eng., vol. 115, no. 3, pp. 132–153, Dec. 1989, doi: https://doi.org/10.1061/(ASCE)0733-9402(1989)115:3(132).

W. Ho, X. Xu, and P. K. Dey, 'Multicriteria decision making approaches for supplier evaluation and selection: A literature review', Eur. J. Oper. Res., vol. 202, no. 1, pp. 16–24, Apr. 2010, doi: https://doi.org/10.1016/j.ejor.2009.05.009.

K. Govindan, S. Rajendran, J. Sarkis, and P. Murugesan, 'Multi criteria decision making approaches for green supplier evaluation and selection: a literature review', J. Clean. Prod., vol. 98, pp. 66–83, 2015, doi: https://doi.org/10.1016/j.jclepro.2013.06.046.

M. Sousa, M. F. Almeida, and R. Calili, 'Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda', Sustainability, vol. 13, no. 8, p. 4129, Apr. 2021, doi: https://doi.org/10.3390/su13084129.

C.-L. Hwang and K. Yoon, 'Methods for Multiple Attribute Decision Making', 1981, pp. 58–191. doi: https://doi.org/10.1007/978-3-642-48318-9_3.

S. Opricovic and G.-H. Tzeng, 'Extended VIKOR method in comparison with outranking methods', Eur. J. Oper. Res., vol. 178, no. 2, pp. 514–529, Apr. 2007, doi: https://doi.org/10.1016/j.ejor.2006.01.020.

E. K. Zavadskas, A. Kaklauskas, F. Peldschus, and Z. Turskis, 'Multi-attribute assessment of road design solutions by using the COPRAS method', Balt. J. Road Bridg. Eng., vol. 2, no. 4, pp. 195–203, 2007, [Online]. Available: https://bjrbe-journals.rtu.lv/bjrbe/article/view/1822-427X.2007.4.195–203

E. K. Zavadskas and Z. Turskis, 'A new additive ratio assessment (ARAS) method in multicriteria decision‐making', Technol. Econ. Dev. Econ., vol. 16, no. 2, pp. 159–172, Jun. 2010, doi: https://doi.org/10.3846/tede.2010.10.

C. S. Carlson, 'Understanding the Fundamental Definitions and Concepts of FMEAs', in Effective FMEAs, vol. 10, Wiley, 2012, pp. 21–55. doi: https://doi.org/10.1002/9781118312575.ch3.

C. Chang, C. Wei, and Y. Lee, 'Failure mode and effects analysis using fuzzy method and grey theory', Kybernetes, vol. 28, no. 9, pp. 1072–1080, Dec. 1999, doi: https://doi.org/10.1108/03684929910300295.

D. H. Stamatis, Failure mode and effect analysis. Quality Press, 2003. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=OuuiEAAAQBAJ&oi

A. Shahin, 'Integration of FMEA and the Kano model', Int. J. Qual. Reliab. Manag., vol. 21, no. 7, pp. 731–746, Sep. 2004, doi: https://doi.org/10.1108/02656710410549082.

N. Banduka, I. Veža, and B. Bilić, 'An integrated lean approach to Process Failure Mode and Effect Analysis (PFMEA): A case study from automotive industry', Adv. Prod. Eng. Manag., vol. 11, no. 4, pp. 355–365, Dec. 2016, doi: https://doi.org/10.14743/apem2016.4.233.

B. W. Schuller et al., 'Failure mode and effects analysis: A community practice perspective', J. Appl. Clin. Med. Phys., vol. 18, no. 6, pp. 258–267, Nov. 2017, doi: https://doi.org/10.1002/acm2.12190.

V. R. Renjith, M. Jose kalathil, P. H. Kumar, and D. Madhavan, 'Fuzzy FMECA (failure mode effect and criticality analysis) of LNG storage facility', J. Loss Prev. Process Ind., pp. 537–547, 2018, doi: https://doi.org/10.1016/j.jlp.2018.01.002.

N. Belu, N. Rachieru, E. Militaru, and D.-C. Anghel, 'Application of FMEA method in product development stage', Acad. J. Manuf. Eng., vol. 10, no. 3, pp. 12–19, 2021, [Online]. Available: https://www.researchgate.net/publication/259645438

D. N. V. S. R. and M. N. M. Pradeep Kumar, 'Reliability Analysis of Dumpers through FMEA-TOPSIS Integration', Int. J. Mod. Trends Sci. Technol., vol. 7, no. 09, pp. 110–118, Sep. 2021, doi: https://doi.org/10.46501/IJMTST0709018.

N. Afzali Behbahani, M. KhodadadiKarimvand, and A. Ahmadi, 'Environmental risk assessment using FMEA and entropy based on TOPSIS method: a case study oil wells drilling', Big Data Comput. Visions, vol. 2, no. 1, pp. 31–39, Mar. 2022, doi: https://doi.org/10.22105/bdcv.2022.331778.1054.

F. Sharifi, M. A. Vahdatzad, B. Barghi, and N. Azadeh-Fard, 'Identifying and ranking risks using combined FMEA-TOPSIS method for new product development in the dairy industry and offering mitigation strategies: case study of Ramak Company', Int. J. Syst. Assur. Eng. Manag., vol. 13, no. 5, pp. 2790–2807, Oct. 2022, doi: https://doi.org/10.1007/s13198-022-01672-8.

H.-W. Lo, W. Shiue, J. J. H. Liou, and G.-H. Tzeng, 'A hybrid MCDM-based FMEA model for identification of critical failure modes in manufacturing', Soft Comput., vol. 24, no. 20, pp. 15733–15745, Oct. 2020, doi: https://doi.org/10.1007/s00500-020-04903-x.

N. Hamta, M. Ehsanifar, A. Babai, and A. Biglar, 'Improving the Identification and Prioritization of the Most Important Risks of Safety Equipment in FMEA with a Hybrid Multiple Criteria Decision-Making Technique', J. Appl. Res. Ind. Eng., vol. 8, no. 1, pp. 1–16, Jul. 2021, doi: https://doi.org/10.22105/jarie.2021.263666.1233.

R. L. Hettiarachchi, P. Koomsap, and P. Ardneam, 'VIKOR power law-based customer-oriented FMEA with complete unique risk priority numbers', Int. J. Qual. Reliab. Manag., vol. 39, no. 8, pp. 2020–2040, Aug. 2022, doi: https://doi.org/10.1108/IJQRM-06-2020-0197.

T. L. Saaty, 'The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach', Oper. Res., vol. 61, no. 5, pp. 1101–1118, Oct. 2013, doi: https://doi.org/10.1287/opre.2013.1197.

J. Rezaei, 'Best-worst multicriteria decision-making method', Omega, vol. 53, pp. 49–57, Jun. 2015, doi: https://doi.org/10.1016/j.omega.2014.11.009.

N. Komatina, D. Tadić, G. Đurić, and A. Aleksić, 'Determination of manufacturing process failures priority under type 2 fuzzy environment: Application of genetic algorithm and Variable neighborhood search', Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 238, no. 5, pp. 2427–2437, Oct. 2024, doi: https://doi.org/10.177/09544089231160510.

N. Komatina, D. Tadić, A. Aleksić, and N. Banduka, 'The integrated PFMEA approach with interval type-2 fuzzy sets and FBWM: A case study in the automotive industry', Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 236, no. 6, pp. 1201–1212, May 2022, doi: https://doi.org/10.1177/09544070211034799.

C. L. Hwang and K. Yoon, 'Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey', 1981, pp. 58–191, doi: https://doi.org/10.1007/978-3-642-48318-9_3.

W. Sałabun and K. Urbaniak, 'A New Coefficient of Rankings Similarity in Decision-Making Problems', Amsterdam, Netherlands: Springer International Publishing, 2020, pp. 632–645. doi: https://doi.org/10.1007/978-3-030-50417-5_47.

Downloads

Published

2024-12-01

Issue

Section

Research Article

How to Cite

[1]
“A compromise-based MADM approach for prioritizing failures: Integrating the RADAR method within the FMEA framework”, j. sist. manaj. ind., vol. 8, no. 2, pp. 73–88, Dec. 2024, doi: 10.30656/jsmi.v8i2.9283.