Implementation system monitoring and control temperature and pH in urban silver catfish hatchery to enhance efficiency and responsiveness based on IoT

Authors

DOI:

https://doi.org/10.30656/jsmi.v8i1.7544

Keywords:

Blynk, Internet of things, Monitoring and controlling system, Silver catfish, Urban farming

Abstract

AKA Farm is an urban agriculture-based silver catfish hatchery enterprise in Bogor Regency. AKA Farm has successfully met local demand for silver catfish fry production by utilizing limited space within vacant houses in Cihideung Ilir village. The comprehensive facilities, including electricity, wells, roads, and drainage channels, support the success of this operation. Challenges in the silver catfish hatchery are associated with low efficiency and responsiveness due to the complexity of the production process, resulting in suboptimal harvest outcomes. The primary contribution of this research lies in developing and implementing an innovative IoT-based monitoring and control system to address water quality conditions, as fluctu­ations in water temperature and pH significantly impact fish metabolism and survival. The main objective of this study is to improve efficiency and responsiveness in the hatchery process, aiming for optimal harvest out­comes. The integrated system utilizes the Blynk application for real-time moni­toring and control. Another advantage of the system is its automation; when the temperature and pH are not optimal, the actuators automatically optimize the aquarium conditions according to applicable standards. The actuators control heating lamps and release acidic or basic solutions. The system performs real-time and remote monitoring and control, reducing delays in responding to changes in the aquarium environment ultimately sub­stantially improving the survival and growth of silver catfish. Impli­cations of this research include assisting farmers in saving time and energy while increasing the productivity of silver catfish hatcheries. The study also reinforces the system's ability to create reliable water quality, supporting the well-being of silver catfish and ultimately enhancing performance in urban farming.

Downloads

Download data is not yet available.

References

M. Abdel-Tawwab, M. N. Monier, S. H. Hoseinifar, and C. Faggio, ‘Fish response to hypoxia stress: growth, physiological, and immunological biomarkers’, Fish Physiol. Biochem., vol. 45, no. 3, pp. 997–1013, Jun. 2019, doi: https://doi.org/10.1007/s10695-019-00614-9.

C. E. Boyd, ‘General Relationship Between Water Quality and Aquaculture Performance in Ponds’, in Fish Diseases, Elsevier, 2017, pp. 147–166, doi: https://doi.org/10.1016/B978-0-12-804564-0.00006-5.

J. Kadhim Abed, ‘Smart Monitoring System of DC to DC Converter for Photovoltaic Application’, Int. J. Power Electron. Drive Syst., vol. 9, no. 2, pp. 722–729, Jun. 2018, doi: https://doi.org/10.11591/ijpeds.v9.i2.pp722-729.

M. J. M. Al-Rubaye, A. Hasan, D. Bozalakov, and A. Van den Bossche, ‘Smart monitoring and controlling of three phase photovoltaic inverter system using lora technology’, in Sixth European Conference on Renewable Energy Systems (ECRES2018)., 2018, pp. 1–7, [Online]. Available: https://biblio.ugent.be/publication/8567242.

A. Jamaluddin, A. Nur’aini, A. Jumari, and A. Purwanto, ‘A Monitoring System of Battery LiFePO4 for Assessment Stand-Alone Street Light Photovoltaic System Based on LabVIEW Interface for Arduino’, Int. J. Power Electron. Drive Syst., vol. 8, no. 2, pp. 926–934, Jun. 2017, doi: https://doi.org/10.11591/ijpeds.v8.i2.pp926-934.

T. S. Gunawan et al., ‘Prototype Design of Smart Home System using Internet of Things’, Indones. J. Electr. Eng. Comput. Sci., vol. 7, no. 1, pp. 107–115, Jul. 2017, doi: https://doi.org/10.11591/ijeecs.v7.i1.pp107-115.

N. A. J. Salih, I. J. Hasan, and N. I. Abdulkhaleq, ‘Design and implementation of a smart monitoring system for water quality of fish farms’, Indones. J. Electr. Eng. Comput. Sci., vol. 14, no. 1, pp. 44–50, Apr. 2019, doi: https://doi.org/10.11591/ijeecs.v14.i1.pp44-50.

M. Mnati, A. Van den Bossche, and R. Chisab, ‘A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application’, Sensors, vol. 17, no. 4, p. 872, Apr. 2017, doi: https://doi.org/10.3390/s17040872.

M. J. Mnati, R. F. Chisab, and A. Van den Bossche, ‘A smart distance power electronic measurement using smartphone applications’, in 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Sep. 2017, p. P.1–P.11, doi: https://doi.org/10.23919/EPE17ECCEEurope.2017.8099394.

M. M. Islam, M. A. Kashem, and J. Uddin, ‘An internet of things framework for real-time aquatic environment monitoring using an Arduino and sensors’, Int. J. Electr. Comput. Eng., vol. 12, no. 1, pp. 826–833, Feb. 2022, doi: https://doi.org/10.11591/ijece.v12i1.pp826-833.

M. M. Billah, Z. M. Yusof, K. Kadir, A. M. M. Ali, and I. Ahmad, ‘Quality Maintenance of Fish Farm: Development of Real-time Water Quality Monitoring System’, in 2019 IEEE International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), Aug. 2019, pp. 1–4, doi: https://doi.org/10.1109/ICSIMA47653.2019.9057294.

N. Rosaline and S. Sathyalakshimi, ‘IoT Based Aquaculture Monitoring and Control System’, J. Phys. Conf. Ser., vol. 1362, no. 1, p. 012071, Nov. 2019, doi: https://doi.org/10.1088/1742-6596/1362/1/012071.

P. Periyadi, G. I. Hapsari, Z. Wakid, and S. Mudopar, ‘IoT-based guppy fish farming monitoring and controlling system’, TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 18, no. 3, pp. 1538–1545, Jun. 2020, doi: https://doi.org/10.12928/telkomnika.v18i3.14850.

O. A. Nasir and S. Mumtazah, ‘IoT-Based Monitoring of Aquaculture System’, MATTER Int. J. Sci. Technol., vol. 6, no. 1, pp. 113–137, Jun. 2020, doi: https://doi.org/10.20319/mijst.2020.61.113137.

G. V. N. Kumar, C. B. Reddy, K. V. Kumar, D. P. Kumari, P. Sunil, and G. L. P. Krishna, ‘Real Time Monitoring and Controlling of Water Levels in Tank with Improved Blynk Features’, in 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Aug. 2021, pp. 366–370, doi: https://doi.org/10.1109/RTEICT52294.2021.9573690.

N. Ya’acob, N. N. S. N. Dzulkefli, A. L. Yusof, M. Kassim, N. F. Naim, and S. S. M. Aris, ‘Water Quality Monitoring System for Fisheries using Internet of Things (IoT)’, IOP Conf. Ser. Mater. Sci. Eng., vol. 1176, no. 1, p. 012016, Aug. 2021, doi: https://doi.org/10.1088/1757-899X/1176/1/012016.

Z. Shareef and S. R. N. Reddy, ‘Design and wireless sensor Network Analysis of Water Quality Monitoring System for Aquaculture’, in 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Mar. 2019, pp. 405–408, doi: https://doi.org/10.1109/ICCMC.2019.8819844.

K. R. S. R. Raju and G. H. K. Varma, ‘Knowledge Based Real Time Monitoring System for Aquaculture Using IoT’, in 2017 IEEE 7th International Advance Computing Conference (IACC), Jan. 2017, pp. 318–321, doi: https://doi.org/10.1109/IACC.2017.0075.

M. Lafont, S. Dupont, P. Cousin, A. Vallauri, and C. Dupont, ‘Back to the future: IoT to improve aquaculture : Real-time monitoring and algorithmic prediction of water parameters for aquaculture needs’, in 2019 Global IoT Summit (GIoTS), Jun. 2019, pp. 1–6, doi: https://doi.org/10.1109/GIOTS.2019.8766436.

D. R. Prapti, A. R. Mohamed Shariff, H. Che Man, N. M. Ramli, T. Perumal, and M. Shariff, ‘Internet of Things (IoT)â€based aquaculture: An overview of IoT application on water quality monitoring’, Rev. Aquac., vol. 14, no. 2, pp. 979–992, Mar. 2022, doi: https://doi.org/10.1111/raq.12637.

N. D. Susanti, D. Sagita, I. F. Apriyanto, C. E. W. Anggara, D. A. Darmajana, and A. Rahayuningtyas, ‘Design and Implementation of Water Quality Monitoring System (Temperature, pH, TDS) in Aquaculture Using IoT at Low Cost’, in 6th International Conference of Food, Agriculture, and Natural Resource (IC-FANRES 2021), 2022, pp. 7–11, doi: https://doi.org/10.2991/absr.k.220101.002.

L. V. Q. Danh, D. V. M. Dung, T. H. Danh, and N. C. Ngon, ‘Design and Deployment of an IoT-Based Water Quality Monitoring System for Aquaculture in Mekong Delta’, Int. J. Mech. Eng. Robot. Res., vol. 9, no. 8, pp. 1170–1175, 2020, doi: https://doi.org/10.18178/ijmerr.9.8.1170-1175.

I. M. Hakimi and Z. Jamil, ‘Development of Water Quality Monitoring Device Using Arduino UNO’, IOP Conf. Ser. Mater. Sci. Eng., vol. 1144, no. 1, p. 012064, May 2021, doi: https://doi.org/10.1088/1757-899X/1144/1/012064.

M. Agustin et al., ‘The Aquarium Monitoring System Design and Prototype for Ornamental Fish Farmers using NodeMCU with Telegram Data Notifications’, in 2022 5th International Conference of Computer and Informatics Engineering (IC2IE), Sep. 2022, pp. 162–166, doi: https://doi.org/10.1109/IC2IE56416.2022.9970044.

A. Sarwar and M. T. Iqbal, ‘IoT-Based Real-Time Aquaculture Health Monitoring System’, Eur. J. Electr. Eng. Comput. Sci., vol. 6, no. 4, pp. 44–50, Aug. 2022, doi: https://doi.org/10.24018/ejece.2022.6.4.455.

P. Sharma and P. Kantha, ‘Blynk’cloud server based monitoring and control using ‘NodeMCU’, Int. Res. J. Eng. Technol., vol. 7, no. 10, pp. 1362–1366, 2020, [Online]. Available: https://www.irjet.net/archives/V7/i10/IRJET-V7I10233.pdf.

A. Rajput, S. Chaudhary, L. Varshney, and D. Singh, ‘IOT based Smart Agriculture Monitoring Using Node MCU AND BLYNK App’, in 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON), May 2022, vol. 1, pp. 448–451, doi: https://doi.org/10.1109/COM-IT-CON54601.2022.9850847.

A. Nandini, R. A. Kumar, and M. K. Singh, ‘Circuits Based on the Memristor for Fundamental Operations’, in 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), Oct. 2021, pp. 251–255, doi: https://doi.org/10.1109/ISPCC53510.2021.9609439.

O. Kryvonos, O. Strutynska, and M. Kryvonos, ‘The use of visual electronic circuits modelling and designing software Fritzing in the educational process’, Zhytomyr Ivan Franko state Univ. journal. Рedagogical Sci., no. 1(108), pp. 198–208, Jun. 2022, doi: 10.35433/pedagogy.1(108).2022.198-208.

H. Mestouri, S. Bahsine, and K. Baraka, ‘Intelligent Multisensors System, Temperature, Gas and Sound, Using Arduino’, in International Conference on Advanced Intelligent Systems for Sustainable Development, Springer, 2023, pp. 230–239, doi: https://doi.org/10.1007/978-3-031-35245-4_21.

V. Kumar. P, K. . Ramya, A. J.S, A. T.S, B. B, and G. V, ‘Smart Garden Monitoring and Control System with Sensor Technology’, in 2021 3rd International Conference on Signal Processing and Communication (ICPSC), May 2021, pp. 93–97, doi: https://doi.org/10.1109/ICSPC51351.2021.9451788.

A. Yadav, M. T. Noori, A. Biswas, and B. Min, ‘A Concise Review on the Recent Developments in the Internet of Things (IoT)-Based Smart Aquaculture Practices’, Rev. Fish. Sci. Aquac., vol. 31, no. 1, pp. 103–118, Jan. 2023, doi: https://doi.org/10.1080/23308249.2022.2090228.

J. Mabrouki et al., ‘Smart System for Monitoring and Controlling of Agricultural Production by the IoT’, in IoT and smart devices for sustainable environment, Springer, 2022, pp. 103–115. doi: https://doi.org/10.1007/978-3-030-90083-0_8.

O. Supriadi, A. Sunardi, H. A. Baskara, and A. Safei, ‘Controlling pH and temperature aquaponics use proportional control with Arduino and Raspberry’, IOP Conf. Ser. Mater. Sci. Eng., vol. 550, no. 1, p. 012016, Jul. 2019, doi: https://doi.org/10.1088/1757-899X/550/1/012016.

A. Spakova and M. Uhanova, ‘An Overview and Evaluation of Black-Box Testing Methods for System Testing’, in Proceedings of the International Conferences Big Data Analytics, Data Mining and Computational Intelligence 2019; and Theory and Practice in Modern Computing 2019, Jul. 2019, pp. 225–229, doi: https://doi.org/10.33965/tpmc2019_201907C030.

J. Kustija and F. Andika, ‘Control - Monitoring System Of Oxygen Level, Ph, Temperature And Feeding in Pond Based on Iot’, REKA ELKOMIKA J. Pengabdi. Kpd. Masy., vol. 2, no. 1, pp. 1–10, Jul. 2021, doi: https://doi.org/10.26760/rekaelkomika.v2i1.1-10.

S. L. Siedlecki, ‘Understanding Descriptive Research Designs and Methods’, Clin. Nurse Spec., vol. 34, no. 1, pp. 8–12, Jan. 2020, doi: https://doi.org/10.1097/NUR.0000000000000493.

I. R. Munthe, B. H. Rambe, R. Pane, D. Irmayani, and M. Nasution, ‘UML Modeling and Black Box Testing Methods in the School Payment Information System’, J. Mantik, vol. 4, no. 3, pp. 1634–1640, 2020, [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/article/view/969.

A. T. Tamim et al., ‘Development of IoT Based Fish Monitoring System for Aquaculture’, Intell. Autom. Soft Comput., vol. 32, no. 1, pp. 55–71, 2022, doi: https://doi.org/10.32604/iasc.2022.021559.

O. A. Anani, C. O. Adetunji, O. T. Olugbemi, D. I. Hefft, N. Wilson, and A. S. Olayinka, ‘IoT-based monitoring system for freshwater fish farming: Analysis and design’, in AI, Edge and IoT-based Smart Agriculture, Elsevier, 2022, pp. 505–515, doi: https://doi.org/10.1016/B978-0-12-823694-9.00026-8.

Downloads

Published

2024/06/04

Issue

Section

Research Article

How to Cite

[1]
F. Amalia and S. . Nasution, “Implementation system monitoring and control temperature and pH in urban silver catfish hatchery to enhance efficiency and responsiveness based on IoT”, j. sist. manaj. ind., vol. 8, no. 1, pp. 22–34, Jun. 2024, doi: 10.30656/jsmi.v8i1.7544.