A modified Aquila optimizer algorithm for optimization energy-efficient no-idle permutation flow shop scheduling problem

Authors

DOI:

https://doi.org/10.30656/jsmi.v7i2.6446

Keywords:

Aquila optimizer (AO), Consumption energy, Flow shop, No idle

Abstract

Increasing energy consumption has faced challenges and pressures for modern manufacturing operations. The production sector accounts for half of the world's total energy consumption. Reducing idle machine time by em­ploying No-Idle Permutation Flow Shop Scheduling (NIPFSP) is one of the best decisions for reducing energy consumption. This article modifies one of the energy consumption-solving algorithms,  the Aquila Optimizer (AO) algo­rithm. This research contributes by 1) proposing novel AO procedures for solving energy consumption problems with NIPFSP and 2) expanding the literature on metaheuristic algorithms that can solve energy consumption problems with NIPFSP. To analyze whether the AO algorithm is optimal, we compared by using the Grey Wolf Optimizer (GWO) algorithm. It com­pares these two algorithms to tackle the problem of energy consumption by testing four distinct problems. Comparison of the AO and GWO algorithm is thirty times for each case for each population and iteration. The outcome of comparing the two algorithms is using a t-test on independent samples and ECR. In all case studies, the results demonstrate that the AO algorithm has a lower energy consumption value than GWO. The AO algorithm is there­fore recommended for minimizing energy consumption because it can produce more optimal results than the comparison algorithm.

References

K. Fang, N. Uhan, F. Zhao, and J. W. Sutherland, ‘A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction’, J. Manuf. Syst., vol. 30, no. 4, pp. 234–240, 2011, doi: https://doi.org/10.1016/j.jmsy.2011.08.004.

Y. Seow and S. Rahimifard, ‘A framework for modelling energy consumption within manufacturing systems’, CIRP J. Manuf. Sci. Technol., vol. 4, no. 3, pp. 258–264, 2011, doi: https://doi.org/10.1016/j.cirpj.2011.03.007.

G. Gong et al., ‘Energy-efficient flexible flow shop scheduling with worker flexibility’, Expert Syst. Appl., vol. 141, p. 112902, Mar. 2020, doi: https://doi.org/10.1016/j.eswa.2019.112902.

G. Mouzon, M. B. Yildirim, and J. Twomey, ‘Operational methods for minimization of energy consumption of manufacturing equipment’, Int. J. Prod. Res., vol. 45, no. 18–19, pp. 4247–4271, Sep. 2007, doi: https://doi.org/10.1080/00207540701450013.

D. M. Utama, A. A. P. Salim, and D. S. Widodo, ‘A novel hybrid archimedes optimization algorithm for energy-efficient hybrid flow shop scheduling’, Int. J. Adv. Intell. Informatics, vol. 8, no. 2, pp. 237–250, 2022, doi: https://doi.org/10.26555/ijain.v8i2.724.

D. M. Utama, D. S. Widodo, M. F. Ibrahim, and S. K. Dewi, ‘A New Hybrid Butterfly Optimization Algorithm for Green Vehicle Routing Problem’, J. Adv. Transp., vol. 2020, pp. 1–14, Dec. 2020, doi: https://doi.org/10.1155/2020/8834502.

H. Öztop, M. F. Tasgetiren, D. T. Eliiyi, Q.-K. Pan, and L. Kandiller, ‘An energy-efficient permutation flowshop scheduling problem’, Expert Syst. Appl., vol. 150, p. 113279, Jul. 2020, doi: https://doi.org/10.1016/j.eswa.2020.113279.

M. Dai, D. Tang, A. Giret, M. A. Salido, and W. D. Li, ‘Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm’, Robot. Comput. Integr. Manuf., vol. 29, no. 5, pp. 418–429, 2013, doi: https://doi.org/10.1016/j.rcim.2013.04.001.

A. Dietmair and A. Verl, ‘A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing’, Int. J. Sustain. Eng., vol. 2, no. 2, pp. 123–133, 2009, doi: https://doi.org/10.1080/19397030902947041.

S. Li, F. Liu, and X. Zhou, ‘Multi-objective energy-saving scheduling for a permutation flow line’, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 232, no. 5, pp. 879–888, 2018, doi: https://doi.org/10.1177/0954405416657583.

S. Ene, İ. Küçükoğlu, A. Aksoy, and N. Öztürk, ‘A genetic algorithm for minimizing energy consumption in warehouses’, Energy, vol. 114, pp. 973–980, 2016, doi: https://doi.org/10.1016/j.energy.2016.08.045.

C. W. Park et al., ‘Energy consumption reduction technology in manufacturing - A selective review of policies, standards, and research’, Int. J. Precis. Eng. Manuf., vol. 10, no. 5, pp. 151–173, 2009, doi: https://doi.org/10.1007/s12541-009-0107-z.

X. Liu, L. Wang, L. Kong, F. Li, and J. Li, ‘A Hybrid Genetic Algorithm for Minimizing Energy Consumption in Flow Shops Considering Ultra-low Idle State’, Procedia CIRP, vol. 80, pp. 192–196, 2019, doi: https://doi.org/10.1016/j.procir.2018.12.013.

M. Ross, ‘Efficient energy use in manufacturing.’, Proc. Natl. Acad. Sci., vol. 89, no. 3, pp. 827–831, Feb. 1992, doi: https://doi.org/10.1073/pnas.89.3.827.

M. S. Nagano and J. V. Moccellin, ‘A new constructive heuristic method for minimizing makespan in permutation flow shop scheduling’, in Encontro Nacional de Engenharia de Produção, 2012, pp. 10–18, [Online]. Available: http://www.din.uem.br/sbpo/sbpo2012/pdf/arq0162.pdf.

V. Riahi, R. Chiong, and Y. Zhang, ‘A new iterated greedy algorithm for no-idle permutation flowshop scheduling with the total tardiness criterion’, Comput. Oper. Res., vol. 117, p. 104839, May 2020, doi: https://doi.org/10.1016/j.cor.2019.104839.

H. Harbaoui and S. Khalfallah, ‘Tabu-search optimization approach for no-wait hybrid flow-shop scheduling with dedicated machines’, Procedia Comput. Sci., vol. 176, pp. 706–712, 2020, doi: https://doi.org/10.1016/j.procs.2020.09.043.

K.-C. Ying, S.-W. Lin, C.-Y. Cheng, and C.-D. He, ‘Iterated reference greedy algorithm for solving distributed no-idle permutation flowshop scheduling problems’, Comput. Ind. Eng., vol. 110, pp. 413–423, Aug. 2017, doi: https://doi.org/10.1016/j.cie.2017.06.025.

Y. Zhou, H. Chen, and G. Zhou, ‘Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem’, Neurocomputing, vol. 137, pp. 285–292, Aug. 2014, doi: https://doi.org/10.1016/j.neucom.2013.05.063.

W. Shao, D. Pi, and Z. Shao, ‘Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion’, Appl. Soft Comput., vol. 54, pp. 164–182, May 2017, doi: https://doi.org/10.1016/j.asoc.2017.01.017.

J. Chen, L. Wang, and Z. Peng, ‘A collaborative optimization algorithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling’, Swarm Evol. Comput., vol. 50, no. April, p. 100557, Nov. 2019, doi: https://doi.org/10.1016/j.swevo.2019.100557.

Q. K. Pan and L. Wang, ‘A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems’, Eur. J. Ind. Eng., vol. 2, no. 3, pp. 279–297, 2008, doi: https://doi.org/10.1504/EJIE.2008.017687.

M. Fatih Tasgetiren, Q. K. Pan, P. N. Suganthan, and A. Oner, ‘A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion’, Appl. Math. Model., vol. 37, no. 10–11, pp. 6758–6779, 2013, doi: https://doi.org/10.1016/j.apm.2013.02.011.

Q. K. Pan and L. Wang, ‘No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm’, Int. J. Adv. Manuf. Technol., vol. 39, no. 7–8, pp. 796–807, 2008, doi: https://doi.org/10.1007/s00170-007-1252-0.

G. Deng and X. Gu, ‘A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion’, Comput. Oper. Res., vol. 39, no. 9, pp. 2152–2160, 2012, doi: https://doi.org/10.1016/j.cor.2011.10.024.

D. M. Utama, T. Baroto, and D. S. Widodo, ‘Energy-Efficient Flow Shop Scheduling Using Hybrid Grasshopper Algorithm Optimization’, J. Ilm. Tek. Ind., vol. 19, no. 1, pp. 30–38, 2020, doi: https://doi.org/10.23917/jiti.v19i1.10079.

D. S. Widodo and D. M. Utama, ‘The Hybrid Ant Lion Optimization Flow Shop Scheduling Problem for Minimizing Completion Time’, J. Phys. Conf. Ser., vol. 1569, no. 2, p. 022097, Jul. 2020, doi: https://doi.org/10.1088/1742-6596/1569/2/022097.

C. N. Al-Imron, D. M. Utama, and S. K. Dewi, ‘An Energy-Efficient No Idle Permutations Flow Shop Scheduling Problem Using Grey Wolf Optimizer Algorithm’, J. Ilm. Tek. Ind., vol. 21, no. 1, pp. 1–10, Jun. 2022, doi: https://doi.org/10.23917/jiti.v21i1.17634.

A. P. Rifai, P. A. Kusumastuti, S. T. W. Mara, R. Norcahy, and S. Z. Dawal, ‘Multi-operator hybrid genetic algorithm-simulated annealing for reentrant permutation flow-shop scheduling’, ASEAN Eng. J., vol. 11, no. 3, pp. 109–126, 2021, doi: https://doi.org/10.11113/AEJ.V11.16875.

A. P. Rifai, S. T. W. Mara, and A. Sudiarso, ‘Multi-objective distributed reentrant permutation flow shop scheduling with sequence-dependent setup time’, Expert Syst. Appl., vol. 183, no. June, p. 115339, Nov. 2021, doi: https://doi.org/10.1016/j.eswa.2021.115339.

W. Meethom and N. Koohathongsumrit, ‘A decision support system for road freight transportation route selection with new fuzzy numbers’, foresight, vol. 22, no. 4, pp. 505–527, Aug. 2020, doi: https://doi.org/10.1108/FS-10-2019-0090.

D. M. Utama, M. D. Primayesti, S. Z. Umamy, B. M. N. Kholifa, and A. D. Yasa, ‘A systematic literature review on energy-efficient hybrid flow shop scheduling’, Cogent Eng., vol. 10, no. 1, p. 2206074, Dec. 2023, doi: https://doi.org/10.1080/23311916.2023.2206074.

W. Meethom and N. Koohathongsumrit, ‘Design of Decision Support System for Road Freight Transportation Routing Using Multilayer Zero One Goal Programming’, Eng. J., vol. 22, no. 6, pp. 185–205, Dec. 2018, doi: https://doi.org/10.4186/ej.2018.22.6.185.

B. Sasmal, A. G. Hussien, A. Das, and K. G. Dhal, ‘A Comprehensive Survey on Aquila Optimizer’, Arch. Comput. Methods Eng., vol. 30, no. 7, pp. 4449–4476, Sep. 2023, doi: https://doi.org/10.1007/s11831-023-09945-6.

Q. Fan, H. Huang, Y. Li, Z. Han, Y. Hu, and D. Huang, ‘Beetle antenna strategy based grey wolf optimization’, Expert Syst. Appl., vol. 165, no. May 2020, p. 113882, Mar. 2021, doi: https://doi.org/10.1016/j.eswa.2020.113882.

G. W. Lockwood and D. E. Cannon, ‘Production Forecasting’, in Harness Oil and Gas Big Data with Analytics, Wiley, 2014, pp. 213–242, doi: https://doi.org/10.1002/9781118910948.ch7.

S. Wang, H. Jia, Q. Liu, and R. Zheng, ‘An improved hybrid Aquila Optimizer and Harris Hawks Optimization for global optimization’, Math. Biosci. Eng., vol. 18, no. 6, pp. 7076–7109, 2021, doi: https://doi.org/10.3934/mbe.2021352.

A. Fatani, A. Dahou, M. A. A. Al-qaness, S. Lu, and M. A. Abd Elaziz, ‘Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System’, Sensors, vol. 22, no. 1, p. 140, Dec. 2021, doi: https://doi.org/10.3390/s22010140.

S. Wang, H. Jia, L. Abualigah, Q. Liu, and R. Zheng, ‘An Improved Hybrid Aquila Optimizer and Harris Hawks Algorithm for Solving Industrial Engineering Optimization Problems’, Processes, vol. 9, no. 9, p. 1551, Aug. 2021, doi: https://doi.org/10.3390/pr9091551.

M. Abd Elaziz, A. Dahou, N. A. Alsaleh, A. H. Elsheikh, A. I. Saba, and M. Ahmadein, ‘Boosting covid-19 image classification using mobilenetv3 and aquila optimizer algorithm’, Entropy, vol. 23, no. 11, p. 1383, Oct. 2021, doi: https://doi.org/10.3390/e23111383.

H. Yu, H. Jia, J. Zhou, and A. G. Hussien, ‘Enhanced Aquila optimizer algorithm for global optimization and constrained engineering problems’, Math. Biosci. Eng., vol. 19, no. 12, pp. 14173–14211, 2022, doi: https://doi.org/10.3934/mbe.2022660.

W. Aribowo, S. Supari, and B. Suprianto, ‘Optimization of PID parameters for controlling DC motor based on the aquila optimizer algorithm’, Int. J. Power Electron. Drive Syst., vol. 13, no. 1, pp. 216–222, Mar. 2022, doi: https://doi.org/10.11591/ijpeds.v13.i1.pp216-222.

M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, and L. Abualigah, ‘Binary Aquila Optimizer for Selecting Effective Features from Medical Data: A COVID-19 Case Study’, Mathematics, vol. 10, no. 11, pp. 1–24, Jun. 2022, doi: https://doi.org/10.3390/math10111929.

L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. A. Al-qaness, and A. H. Gandomi, ‘Aquila Optimizer: A novel meta-heuristic optimization algorithm’, Comput. Ind. Eng., vol. 157, no. February, p. 107250, Jul. 2021, doi: https://doi.org/10.1016/j.cie.2021.107250.

D. Baraz and G. Mosheiov, ‘A note on a greedy heuristic for flow-shop makespan minimization with no machine idle-time’, Eur. J. Oper. Res., vol. 184, no. 2, pp. 810–813, 2008, doi: https://doi.org/10.1016/j.ejor.2006.11.025.

W.-J. Ren, Quan-Ke Pan, Jun-Qing Li, and J. J. Liang, ‘Tabu search algorithm for solving No-idle permutation Flow Shop Scheduling Problem’, in 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), Sep. 2010, no. 2, pp. 449–453, doi: https://doi.org/10.1109/BICTA.2010.5645167.

W.-J. Ren, J.-H. Duan, F. Zhang, H. Han, and M. Zhang, ‘Hybrid Tabu Search Algorithm for bi-criteria No-idle permutation flow shop scheduling problem’, in 2011 Chinese Control and Decision Conference (CCDC), May 2011, pp. 1699–1702, doi: https://doi.org/10.1109/CCDC.2011.5968469.

M. F. Tasgetiren, Q. K. Pan, P. N. Suganthan, and T. Jin Chua, ‘A differential evolution algorithm for the no-idle flowshop scheduling problem with total tardiness criterion’, Int. J. Prod. Res., vol. 49, no. 16, pp. 5033–5050, 2011, doi: https://doi.org/10.1080/00207543.2010.497781.

M. F. Tasgetiren, O. Buyukdagli, Q.-K. Pan, and P. N. Suganthan, ‘A General Variable Neighborhood Search Algorithm for the No-Idle Permutation Flowshop Scheduling Problem’, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8297 LNCS, no. PART 1, 2013, pp. 24–34, doi: https://doi.org/10.1007/978-3-319-03753-0_3.

Y. Wang and X. Li, ‘Shuffled Frog Leaping Algorithm for a Bi-objective No-Idle Permutation Flow Shop’, in 2013 IEEE International Conference on Systems, Man, and Cybernetics, Oct. 2013, pp. 2808–2813, doi: https://doi.org/10.1109/SMC.2013.479.

C. Ling-Fang, W. Ling, and W. Jing-jing, ‘A Two-Stage Memetic Algorithm for Distributed No-Idle Permutation Flowshop Scheduling Problem’, in 2018 37th Chinese Control Conference (CCC), Jul. 2018, vol. 2018-July, no. 1, pp. 2278–2283, doi: https://doi.org/10.23919/ChiCC.2018.8483752.

M. Fatih Tasgetiren, H. Öztop, L. Gao, Q. K. Pan, and X. Li, ‘A Variable Iterated Local Search Algorithm for Energy-Efficient No-idle Flowshop Scheduling Problem’, Procedia Manuf., vol. 39, no. 2019, pp. 1185–1193, 2019, doi: https://doi.org/10.1016/j.promfg.2020.01.351.

Y.-Z. Li, Q.-K. Pan, J.-Q. Li, L. Gao, and M. F. Tasgetiren, ‘An Adaptive Iterated Greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems’, Swarm Evol. Comput., vol. 63, no. March, p. 100874, Jun. 2021, doi: https://doi.org/10.1016/j.swevo.2021.100874.

C.-Y. Cheng, S.-W. Lin, P. Pourhejazy, K.-C. Ying, and Y.-Z. Lin, ‘No-Idle Flowshop Scheduling for Energy-Efficient Production: An Improved Optimization Framework’, Mathematics, vol. 9, no. 12, pp. 1–18, Jun. 2021, doi: https://doi.org/10.3390/math9121335.

R. Ruiz, E. Vallada, and C. Fernández-Martínez, ‘Scheduling in Flowshops with No-Idle Machines’, in Studies in Computational Intelligence, vol. 230, 2009, pp. 21–51, doi: https://doi.org/10.1007/978-3-642-02836-6_2.

D. M. Utama, D. S. Widodo, W. Wicaksono, and L. R. Ardiansyah, ‘A new hybrid metaheuristics algorithm for minimizing energy consumption in the flow shop scheduling problem’, Int. J. Technol., vol. 10, no. 2, pp. 320–331, 2019, doi: https://doi.org/10.14716/ijtech.v10i2.2194.

D. M. Utama and M. D. Primayesti, ‘A novel hybrid Aquila optimizer for energy-efficient hybrid flow shop scheduling’, Results Control Optim., vol. 9, no. 246, p. 100177, Dec. 2022, doi: https://doi.org/10.1016/j.rico.2022.100177.

J. Carlier, ‘Ordonnancements à contraintes disjonctives’, RAIRO - Oper. Res., vol. 12, no. 4, pp. 333–350, 1978, doi: https://doi.org/10.1051/ro/1978120403331.

C. R. Reeves, ‘A genetic algorithm for flowshop sequencing’, Comput. Oper. Res., vol. 22, no. 1, pp. 5–13, Jan. 1995, doi: https://doi.org/10.1016/0305-0548(93)E0014-K.

J. Heller, ‘ Some Numerical Experiments for an M × J Flow Shop and its Decision-Theoretical Aspects ’, Oper. Res., vol. 8, no. 2, pp. 178–184, 1960, doi: https://doi.org/10.1287/opre.8.2.178.

Downloads

Published

2023-12-01

Issue

Section

Research Article

How to Cite

[1]
“A modified Aquila optimizer algorithm for optimization energy-efficient no-idle permutation flow shop scheduling problem”, j. sist. manaj. ind., vol. 7, no. 2, pp. 95–115, Dec. 2023, doi: 10.30656/jsmi.v7i2.6446.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)