Incorporating deep learning data analytics techniques in the optimisation of capacitated planned maintenance

Abstract views: 191 , PDF downloads: 1191
Keywords: Deep learning data analytics, Optimisation, MTBF, Capacitated planned maintenance

Abstract

Manufacturing systems must be supported by the availability of materials, a streamlined production process and a prepared production line to achieve the production target. In a mass customization manufacturing system, the number of machines required for customization is relatively small. Conse-quently, maintenance on critical machines will impact this manufacturing system the most. Two types of maintenance strategies are implemented: corrective and preventive maintenance. The corrective maintenance requires more resources since the time and cost to repair the breakdown machine will be higher due to fatal failure. For the management to consider preventive maintenance while the binding machines are still operational, it must be equipped with a deep analysis demonstrating that fewer resources will be required. This paper discusses two deep analyses: accurate prediction of the binding machines' breakdown based on Mean Time Between Failure (MTBF) data using a deep learning data analytics technique and optimizing the maintenance total cost in the available capacitated time. The findings and results of this paper show that the proposed deep learning data analytics technique can increase the MTBF prediction accuracy by up to 66.12% and reduce the total maintenance cost by up to 4% compared with the original model.

Downloads

Download data is not yet available.

References

G. Waeyenbergh and L. Pintelon, ‘A framework for maintenance concept development’, Int. J. Prod. Econ., vol. 77, no. 3, pp. 299–313, 2002, doi: https://doi.org/10.1016/S0925-5273(01)00156-6.

X. Yang, Y. He, R. Liao, Y. Cai, and J. Ai, ‘Integrated mission reliability modeling based on extended quality state task network for intelligent multistate manufacturing systems’, Reliab. Eng. Syst. Saf., vol. 223, p. 108495, 2022, doi: https://doi.org/10.1016/j.ress.2022.108495.

Y. Zhao et al., ‘Functional risk-oriented integrated preventive maintenance considering product quality loss for multistate manufacturing systems’, Int. J. Prod. Res., vol. 59, no. 4, pp. 1003–1020, Feb. 2021, doi: https://doi.org/10.1080/00207543.2020.1713416.

W. Wang, Y. He, R. Liao, Y. Cai, X. Zheng, and Y. Zhao, ‘Mission reliability driven functional healthy state modeling approach considering production rhythm and workpiece quality for manufacturing systems’, Reliab. Eng. Syst. Saf., vol. 226, p. 108682, 2022, doi: https://doi.org/10.1016/j.ress.2022.108682.

D. Bumblauskas, D. Gemmill, A. Igou, and J. Anzengruber, ‘Smart Maintenance Decision Support Systems (SMDSS) based on corporate big data analytics’, Expert Syst. Appl., vol. 90, pp. 303–317, 2017, doi: https://doi.org/10.1016/j.eswa.2017.08.025.

C.-J. Su and S.-F. Huang, ‘Real-time big data analytics for hard disk drive predictive maintenance’, Comput. Electr. Eng., vol. 71, pp. 93–101, 2018, doi: https://doi.org/10.1016/j.compeleceng.2018.07.025.

D. Dinis, A. Barbosa-Póvoa, and Â. P. Teixeira, ‘Valuing data in aircraft maintenance through big data analytics: A probabilistic approach for capacity planning using Bayesian networks’, Comput. Ind. Eng., vol. 128, pp. 920–936, 2019, doi: https://doi.org/10.1016/j.cie.2018.10.015.

Y. Zhang, S. Ren, Y. Liu, and S. Si, ‘A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products’, J. Clean. Prod., vol. 142, pp. 626–641, 2017, doi: https://doi.org/10.1016/j.jclepro.2016.07.123.

R. Foresti, S. Rossi, M. Magnani, C. Guarino Lo Bianco, and N. Delmonte, ‘Smart Society and Artificial Intelligence: Big Data Scheduling and the Global Standard Method Applied to Smart Maintenance’, Engineering, vol. 6, no. 7, pp. 835–846, 2020, doi: https://doi.org/10.1016/j.eng.2019.11.014.

H.-J. Shaw and C.-K. Lin, ‘Marine big data analysis of ships for the energy efficiency changes of the hull and maintenance evaluation based on the ISO 19030 standard’, Ocean Eng., vol. 232, p. 108953, 2021, doi: https://doi.org/10.1016/j.oceaneng.2021.108953.

A. Jamshidi et al., ‘A decision support approach for condition-based maintenance of rails based on big data analysis’, Transp. Res. Part C Emerg. Technol., vol. 95, pp. 185–206, 2018, doi: https://doi.org/10.1016/j.trc.2018.07.007.

M. Alimian, V. Ghezavati, and R. Tavakkoli-Moghaddam, ‘New integration of preventive maintenance and production planning with cell formation and group scheduling for dynamic cellular manufacturing systems’, J. Manuf. Syst., vol. 56, pp. 341–358, 2020, doi: https://doi.org/10.1016/j.jmsy.2020.06.011.

H. Hesabi, M. Nourelfath, and A. Hajji, ‘A deep learning predictive model for selective maintenance optimization’, Reliab. Eng. Syst. Saf., vol. 219, p. 108191, 2022, doi: https://doi.org/10.1016/j.ress.2021.108191.

P.-C. Chang, ‘Theory and applications of an integrated model for capacitated-flow network reliability analysis’, Comput. Ind. Eng., vol. 164, p. 107877, 2022, doi: https://doi.org/10.1016/j.cie.2021.107877.

M. Faccio, A. Persona, F. Sgarbossa, and G. Zanin, ‘Industrial maintenance policy development: A quantitative framework’, Int. J. Prod. Econ., vol. 147, pp. 85–93, 2014, doi: https://doi.org/10.1016/j.ijpe.2012.08.018.

T. Kuschel and S. Bock, ‘Solving the Weighted Capacitated Planned Maintenance Problem and its variants’, Eur. J. Oper. Res., vol. 272, no. 3, pp. 847–858, 2019, doi: https://doi.org/10.1016/j.ejor.2018.07.008.

E. Leo and S. Engell, ‘Condition-based maintenance optimization via stochastic programming with endogenous uncertainty’, Comput. Chem. Eng., vol. 156, p. 107550, 2022, doi: https://doi.org/10.1016/j.compchemeng.2021.107550.

M. Ghaleb, S. Taghipour, and H. Zolfagharinia, ‘Real-time integrated production-scheduling and maintenance-planning in a flexible job shop with machine deterioration and condition-based maintenance’, J. Manuf. Syst., vol. 61, pp. 423–449, 2021, doi: https://doi.org/10.1016/j.jmsy.2021.09.018.

N. Zhang, F. Qi, C. Zhang, and H. Zhou, ‘Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system’, Reliab. Eng. Syst. Saf., vol. 219, p. 108232, 2022, doi: https://doi.org/10.1016/j.ress.2021.108232.

M. Alimian, V. Ghezavati, R. Tavakkoli-Moghaddam, and R. Ramezanian, ‘Solving a parallel-line capacitated lot-sizing and scheduling problem with sequence-dependent setup time/cost and preventive maintenance by a rolling horizon method’, Comput. Ind. Eng., vol. 168, p. 108041, 2022, doi: https://doi.org/10.1016/j.cie.2022.108041.

A. M. Akl, S. El Sawah, R. K. Chakrabortty, and H. H. Turan, ‘A Joint Optimization of Strategic Workforce Planning and Preventive Maintenance Scheduling: A Simulation–Optimization Approach’, Reliab. Eng. Syst. Saf., vol. 219, p. 108175, 2022, doi: https://doi.org/10.1016/j.ress.2021.108175.

A. Corallo, A. M. Crespino, M. Lazoi, and M. Lezzi, ‘Model-based Big Data Analytics-as-a-Service framework in smart manufacturing: A case study’, Robot. Comput. Integr. Manuf., vol. 76, p. 102331, 2022, doi: https://doi.org/10.1016/j.rcim.2022.102331.

N. Shukla, M. K. Tiwari, and G. Beydoun, ‘Next generation smart manufacturing and service systems using big data analytics’, Comput. Ind. Eng., vol. 128, pp. 905–910, 2019, doi: https://doi.org/10.1016/j.cie.2018.12.026.

G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, ‘Machine Learning for Predictive Maintenance: A Multiple Classifier Approach’, IEEE Trans. Ind. Informatics, vol. 11, no. 3, pp. 812–820, 2015, doi: https://doi.org/10.1109/TII.2014.2349359.

R. Sahal, J. G. Breslin, and M. I. Ali, ‘Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case’, J. Manuf. Syst., vol. 54, pp. 138–151, 2020, doi: https://doi.org/10.1016/j.jmsy.2019.11.004.

A. Crespo Márquez, A. de la Fuente Carmona, J. A. Marcos, and J. Navarro, ‘Designing CBM Plans, Based on Predictive Analytics and Big Data Tools, for Train Wheel Bearings’, Comput. Ind., vol. 122, p. 103292, 2020, doi: https://doi.org/10.1016/j.compind.2020.103292.

A. Solomon, M. Kertis, B. Shapira, and L. Rokach, ‘A deep learning framework for predicting burglaries based on multiple contextual factors’, Expert Syst. Appl., vol. 199, p. 117042, 2022, doi: https://doi.org/10.1016/j.eswa.2022.117042.

M. Cheng, H. Yuan, Q. Wang, Z. Cai, Y. Liu, and Y. Zhang, ‘Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics on the recognition effect’, Comput. Electron. Agric., vol. 198, p. 107010, 2022, doi: https://doi.org/10.1016/j.compag.2022.107010.

E. Raei, A. Akbari Asanjan, M. R. Nikoo, M. Sadegh, S. Pourshahabi, and J. F. Adamowski, ‘A deep learning image segmentation model for agricultural irrigation system classification’, Comput. Electron. Agric., vol. 198, p. 106977, 2022, doi: https://doi.org/10.1016/j.compag.2022.106977.

K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, ‘On the properties of neural machine translation: Encoder-decoder approaches’, in Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014, pp. 103–111, [Online]. Available: https://aclanthology.org/W14-4012.pdf.

A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, ‘Dive into deep learning’, 2021. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2021arXiv210611342Z/abstract.

PlumX Metrics

Published
2022-12-30
How to Cite
[1]
M. R. A. Purnomo, “Incorporating deep learning data analytics techniques in the optimisation of capacitated planned maintenance”, j. sist. manaj. ind., vol. 6, no. 2, pp. 167-175, Dec. 2022.
Section
Research Article