Problem-solving step analysis for increasing tire static balance levels: a case study

  • Tubagus Hendri Febriana Universitas Mercu Buana
  • Hendi Herlambang Universitas Mercu Buana
  • Hernadewita Hernadewita Universitas Mercu Buana
  • Hasbullah Hasbullah Universitas Mercu Buana
  • Abdul Halim PT. Sumi Rubber Indonesia
Abstract views: 670 , PDF downloads: 10063
Keywords: Root cause analysis, Fault tree analysis, Failure mode and effect analysis, Tire

Abstract

One of the company's efforts in implementing the commitment to customer satisfaction is carried out through continuous improvement activities. All indicators are evaluated to determine the level of quality stability against process variations that will impact non-compliance with predetermined product specifications. One of the quality problems found in the tire manufacture industry is the out-percentage of tire uniformity, which suddenly increases, one of which is the value of static balance. This study analyses the process variation factors that occur to take corrective and preventive actions through a series of Root Cause Analysis (RCA), Fault Tree Analysis (FTA), and Failure Mode and Effect Analysis (FMEA). Refers to the analysis result, it was found that there was a problem with the rubber film gauge variation at the manufacturing step of the steel breaker, one of the material components in the tire construction. Two main factors cause rubber film thickness variation:  rubber sticky with roll calendar, Radial Run Out (RRO) Roll Calendar out standard, and viscosity compound variation with 12 root problems found. The results of the improvements that have been made can effectively improve rubber film thickness variation, increase the Cpk level of steel breaker material from 0.82 to 1.91 and reduce the out percentage ratio of static balance by 54.65%.

Downloads

Download data is not yet available.

References

E. W. Yunitasari, R. Widiastuti, B. S. Wisnuaji, M. Erwinda, and E. Sutanta, “Analysis of the quality of wheel chain products at UPT logam Yogyakarta using FMEA method,” J. Phys. Conf. Ser., vol. 1456, p. 12033, 2020, doi: https://doi.org/10.1088/1742-6596/1456/1/012033.

S. Karabay and I. Uzman, “Importance of early detection of maintenance problems in rotating machines in management of plants: Case studies from wire and tyre plants,” Eng. Fail. Anal., vol. 16, no. 1, pp. 212–224, 2009, doi: https://doi.org/10.1016/j.engfailanal.2008.03.003.

N. Dhanrale, B. Aldar, S. Bhatambrekar, and P. Pardeshi, “Reduction of wheel unbalance during design & manufacturing by reducing process variation,” in nternational Engineering Research Journal, 2015, pp. 159–164. Available: http://www.ierjournal.org/pupload/mitpgcon/MD1-46.pdf.

N. A. Wessiani and F. Yoshio, “Failure mode effect analysis and fault tree analysis as a combined methodology in risk management,” IOP Conf. Ser. Mater. Sci. Eng., vol. 337, p. 12033, 2018, doi: https://doi.org/10.1088/1757-899x/337/1/012033.

D. Safira, F. Safitri, H. Kamal, Meilani, C. M. Sujana, and A. Andika, “Time accelaration of offshore EPC project using FMEA, FTA, CPM and crashing method at PT XYZ,” IOP Conf. Ser. Earth Environ. Sci., vol. 426, p. 12126, 2020, doi: https://doi.org/10.1088/1755-1315/426/1/012126.

M. Cheshmberah, A. Naderizadeh, A. Shafaghat, and M. Karimi Nokabadi, “An integrated process model for root cause failure analysis based on reality charting, FMEA and DEMATEL,” Int. J. Data Netw. Sci., vol. 4, no. 2, pp. 225–236, 2020, doi: https://doi.org/10.5267/j.ijdns.2019.12.003.

V. Goa, “General model for RCA in Manufacturing Industry. Case study from Kverneland Group,” University of Stavanger, Norway, 2017. Available: https://uis.brage.unit.no/uis-xmlui/handle/11250/2460093.

A. A. Utami and N. W. P. Susatyo, “Aplikasi Fault Tree Analysis Perbedaan Persepsi Campus Sustainability Mahasiswa dalam Perilaku Pro Lingkungan Dilingkungan Kampus,” Oper. Excell., vol. 10, no. 1, pp. 101–106, 2018. Available: https://publikasi.mercubuana.ac.id/index.php/oe/article/view/3824.

R. K. Sharma and P. Sharma, “Qualitative and quantitative approaches to analyse reliability of a mechatronic system: a case,” J. Ind. Eng. Int., vol. 11, no. 2, pp. 253–268, 2015, doi: https://doi.org/10.1007/s40092-015-0098-6.

J.-H. Lee, S. Hwang, and S. Kim, “Safety Assessment of LNG Transferring System subjected to gas leakage using FMEA and FTA,” J. Adv. Res. Ocean Eng., vol. 3, no. 3, pp. 125–135, 2017, doi: https://doi.org/10.5574/JAROE.2017.3.3.125.

M. Shafiee, E. Enjema, and A. Kolios, “An Integrated FTA-FMEA Model for Risk Analysis of Engineering Systems: A Case Study of Subsea Blowout Preventers,” Applied Sciences, vol. 9, no. 6. p. 1192, 2019, doi: https://doi.org/10.3390/app9061192.

I. Alqais and Erryrimawan, “Reducing Main Engine Failure using the FMEA Method in LPG Refineries,” Int. J. Mech. Prod. Eng. Res. Dev. (IJMPERD ), vol. 9, no. 6, pp. 873–886, 2019. Available: http://www.tjprc.org/view_paper.php?id=12195.

A. L. Ungureanu and G. Stan, “Improving FMEA risk assessment through reprioritization of failures,” IOP Conf. Ser. Mater. Sci. Eng., vol. 145, p. 22004, 2016, doi: https://doi.org/10.1088/1757-899x/145/2/022004.

S. Supriyati and H. Hasbullah, “Analisis cacat painting komponen automotive dengan pendekatan DMAIC-FMEA,” Oper. Excell. J. Appl. Ind. Eng., vol. 12, no. 1, pp. 104–116, Mar. 2020, doi: https://doi.org/10.22441/oe.2020.v12.i1.009.

J. F. W. Peeters, R. J. I. Basten, and T. Tinga, “Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner,” Reliab. Eng. Syst. Saf., vol. 172, pp. 36–44, 2018, doi: https://doi.org/10.1016/j.ress.2017.11.024.

N. G. Mutlu and S. Altuntas, “Risk analysis for occupational safety and health in the textile industry: Integration of FMEA, FTA, and BIFPET methods,” Int. J. Ind. Ergon., vol. 72, pp. 222–240, 2019, doi: https://doi.org/10.1016/j.ergon.2019.05.013.

M. Vodenicharova, “Opportunities for the applications of FMEA Model in logistics processes in Bulgarian enterprises,” Logist. Sustain. Transp., vol. 8, no. 1, pp. 31–41, May 2017, doi: https://doi.org/10.1515/jlst-2017-0003.

R. Hutabarat, T. H. Sen Rimo, Meilani, and A. Andika, “Improving delivery performance by using simulation, FMEA, and FTA,” IOP Conf. Ser. Earth Environ. Sci., vol. 426, p. 12125, 2020, doi: https://doi.org/10.1088/1755-1315/426/1/012125.

N. G. Mutlu and S. Altuntas, “Hazard and risk analysis for ring spinning yarn production process by integrated fta-fmea approach,” Tekst. ve Konfeksiyon, vol. 29, no. 3, pp. 208–218, Sep. 2019, doi: https://doi.org/10.32710/tekstilvekonfeksiyon.482167.

E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools,” Comput. Sci. Rev., vol. 15–16, pp. 29–62, 2015, doi: https://doi.org/10.1016/j.cosrev.2015.03.001.

I. Tubert-Brohman, W. Sherman, M. Repasky, and T. Beuming, “Improved Docking of Polypeptides with Glide,” J. Chem. Inf. Model., vol. 53, no. 7, pp. 1689–1699, Jul. 2013, doi: https://doi.org/10.1021/ci400128m.

M. Kirchhof, K. Haas, T. Kornas, S. Thiede, M. Hirz, and C. Herrmann, “Root Cause Analysis in Lithium-Ion Battery Production with FMEA-Based Large-Scale Bayesian Network,” CIRP J. Manuf. Sci. Technol., pp. 1–19, 2020, doi: https://doi.org/10.20944/preprints202012.0312.v1.

K. P. Kour, L. Talwar, and N. S. Bhangu, “Wind Turbine Reliability Analysis In Case of Wind Turbine Blades,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 8, no. 10, pp. 9922–9929, 2019. Available: https://www.ijirset.com/upload/2019/october/5_Wind.PDF.

T. Aized, M. Ahmad, M. H. Jamal, A. Mahmood, S. Ubaid ur Rehman, and J. S. Srai, “Automotive leaf spring design and manufacturing process improvement using failure mode and effects analysis (FMEA),” Int. J. Eng. Bus. Manag., vol. 12, p. 1847979020942438, Jan. 2020, doi: https://doi.org/10.1177/1847979020942438.

A. R. Aprilia, I. Santoso, and D. M. Ekasari, “The integration methods of fuzzy fault mode and effect analysis and fault tree analysis for risk analysis of yogurt production,” AIP Conf. Proc., vol. 1844, no. 1, p. 30008, May 2017, doi: https://doi.org/10.1063/1.4983435.

R. A. K. W. Campus and R. Al Khaimah, “Software Failure Analysis using FMEA,” Int. J. Softw. Eng. Its Appl., vol. 12, no. 3, pp. 19–28, 2018. Available: https://gvpress.com/journals/IJSEIA/vol12_no3/2.pdf.

K. Shanks, A. Hamad, and A. Ameer, “Failure Modes Effects and Criticality Analysis and Fault Tree Analysis Case Study of Waste Heat Recovery Plant in a Cement Factory, United Arab Emirates,” J. Fail. Anal. Prev., vol. 20, no. 1, pp. 40–50, 2020, doi: https://doi.org/10.1007/s11668-020-00827-8.

D. H. Stamatis, The ASQ pocket guide to failure mode and effect analysis (FMEA). Quality Press, 2014. Available: https://asq.org/quality-press/display-item?item=E1468.

H. M. Kwon, S. H. Hong, and M. K. Lee, “A Risk Metric for Failure Cause in FMEA under Time-Dependent Failure Occurrence and Detection,” J. Korean Soc. Qual. Manag., vol. 47, no. 3, pp. 571–582, 2019, doi: https://doi.org/10.7469/JKSQM.2019.47.3.571.

T. M. El-Dogdog, A. M. El-Assal, I. H. Abdel-Aziz, and A. A. El-Betar, “Implementation of FMECA and Fishbone Techniques in Reliability Centered Maintenance Planning,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 5, no. 11, pp. 18801–18811. Available: https://www.ijirset.com/upload/2016/november/1A_Implementation.pdf.

PlumX Metrics

Published
2021-06-30
How to Cite
[1]
T. H. Febriana, H. Herlambang, H. Hernadewita, H. Hasbullah, and A. Halim, “Problem-solving step analysis for increasing tire static balance levels: a case study”, j. sist. manaj. ind., vol. 5, no. 1, pp. 15-24, Jun. 2021.
Section
Articles