Economic production quantity model involving repair, waste disposal, electricity tariff, and emissions tax

Authors

DOI:

https://doi.org/10.30656/jsmi.v8i2.8961

Keywords:

Economic production quantity , Emission, Electricity, Genetic algorithm

Abstract

This research aims to develop a new model for a comprehensive Economic Production Quantity (EPQ) by considering repair processes, waste disposal, electricity tariffs, and emission taxes to optimize inventory management decisions in two shops. The first shop is responsible for providing new manufacturing and remanufacturing products required by the second shop, which focuses on inventorying finished products to meet demand. The main objective of the proposed Model is to minimize total cost. The Model is formulated as Integer Non-Linear Programming (INLP) to represent the complexity of production and inventory decisions. This study applies a Genetic Algorithm (GA) approach run using Microsoft Excel software with the Solver feature To optimize the solution of the proposed Model. Sensitivity analysis shows that while increases in electricity tariffs and emissions taxes significantly increase the total costs incurred by firms, these factors do not directly reduce total energy consumption or carbon emissions. Instead, increased costs generally result in smaller optimal production batch sizes, which does not necessarily translate into reduced energy use, as operational energy requirements remain constant. Our findings emphasize the delicate balance between cost components and energy use, highlighting that increased electricity costs and emissions do not directly lead to overall cost savings or improved energy efficiency.

Downloads

Download data is not yet available.

References

[1] Z. Chen and B. Bidanda, ‘Sustainable manufacturing production-inventory decision of multiple factories with JIT logistics, component recovery and emission control’, Transp. Res. Part E Logist. Transp. Rev., vol. 128, pp. 356–383, 2019, doi: https://doi.org/10.1016/j.tre.2019.06.013.

[2] M. Garetti and M. Taisch, ‘Sustainable manufacturing: trends and research challenges’, Prod. Plan. Control, vol. 23, no. 2–3, pp. 83–104, Feb. 2012, doi: https://doi.org/10.1080/09537287.2011.591619.

[3] D. Marsetiya Utama, I. Amallynda, S. Rubiyanti, and M. A. Baihaqi, ‘Multi-Item Lot Sizing Optimization Involving Transportation Cost and Stochastic Demand with Aquila Algorithm’, in 2023 1st International Conference on Advanced Engineering and Technologies (ICONNIC), IEEE, Oct. 2023, pp. 126–131. doi: https://doi.org/10.1109/ICONNIC59854.2023.10467551.

[4] A. F. Momena, R. Haque, M. Rahaman, and S. P. Mondal, ‘A Two-Storage Inventory Model with Trade Credit Policy and Time-Varying Holding Cost under Quantity Discounts’, Logistics, vol. 7, no. 4, p. 77, Oct. 2023, doi: https://doi.org/10.3390/logistics7040077.

[5] W. A. Jauhari, I. N. Pujawan, and M. Suef, ‘Sustainable inventory management with hybrid production system and investment to reduce defects’, Ann. Oper. Res., vol. 324, no. 1, pp. 543–572, 2023, doi: https://doi.org/10.1007/s10479-022-04666-8.

[6] S. H. Abdul-Rashid, N. Sakundarini, R. A. Raja Ghazilla, and R. Thurasamy, ‘The impact of sustainable manufacturing practices on sustainability performance’, Int. J. Oper. Prod. Manag., vol. 37, no. 2, pp. 182–204, Jan. 2017, doi: https://doi.org/10.1108/IJOPM-04-2015-0223.

[7] P. Selvi and W. Ritha, ‘EOQ and EPQ Inventory Models for Pollution Control with Integration of Environmental Cost’, J. Algebr. Stat., vol. 13, no. 3, pp. 2687–2695, 2022, [Online]. Available: https://publishoa.com/index.php/journal/article/view/927

[8] D. M. Utama, D. S. Widodo, M. F. Ibrahim, K. Hidayat, and S. K. Dewi, ‘The Sustainable Economic Order Quantity Model: A Model Consider Transportation, Warehouse, Emission Carbon Costs, and Capacity Limits’, J. Phys. Conf. Ser., vol. 1569, no. 2, p. 022095, Jul. 2020, doi: https://doi.org/10.1088/1742-6596/1569/2/022095.

[9] D. M. Utama, I. Santoso, Y. Hendrawan, and W. A. P. Dania, ‘A sustainable production-inventory model with CO2 emission, electricity and fuel consumption under quality degradation and stochastic demand: a case study in the agri-food industry’, Environ. Dev. Sustain., Jan. 2024, doi: https://doi.org/10.1007/s10668-023-04271-0.

[10] M. Rahaman et al., ‘Solvability Criteria for Uncertain Differential Equations and Their Applicability in an Economic Lot-Size Model with a Type-2 Interval Phenomenon’, Symmetry (Basel)., vol. 15, no. 10, p. 1883, Oct. 2023, doi: https://doi.org/10.3390/sym15101883.

[11] A. H. M. Mashud, D. Roy, R. K. Chakrabortty, M.-L. Tseng, and M. Pervin, ‘An optimum balance among the reduction in ordering cost, product deterioration and carbon emissions: a sustainable green warehouse’, Environ. Sci. Pollut. Res., vol. 29, no. 51, pp. 78029–78051, 2022, doi: https://doi.org/10.1007/s11356-022-21008-0.

[12] S. K. De, B. Roy, and K. Bhattacharya, ‘Solving an EPQ model with doubt fuzzy set: A robust intelligent decision-making approach’, Knowledge-Based Syst., vol. 235, p. 107666, 2022, doi: https://doi.org/10.1016/j.knosys.2021.107666.

[13] Z. Wu and M. Pagell, ‘Balancing priorities: Decision-making in sustainable supply chain management’, J. Oper. Manag., vol. 29, no. 6, pp. 577–590, 2011, doi: https://doi.org/10.1016/j.jom.2010.10.001.

[14] M. Rahaman, S. P. Mondal, B. Chatterjee, S. Alam, and A. A. Shaikh, ‘Generalization of Classical Fuzzy Economic Order Quantity Model Based on Memory Dependency via Fuzzy Fractional Differential Equation Approach’, J. Uncertain Syst., vol. 15, no. 01, p. 2250003, Mar. 2022, doi: https://doi.org/10.1142/S1752890922500039.

[15] N. Yassine, ‘A sustainable economic production model: effects of quality and emissions tax from transportation’, Ann. Oper. Res., vol. 290, no. 1, pp. 73–94, 2020, doi: https://doi.org/10.1007/s10479-018-3069-7.

[16] A. A. Taleizadeh, V. R. Soleymanfar, and K. Govindan, ‘Sustainable economic production quantity models for inventory systems with shortage’, J. Clean. Prod., vol. 174, pp. 1011–1020, 2018, doi: https://doi.org/10.1016/j.jclepro.2017.10.222.

[17] A. F. Momena, M. Rahaman, R. Haque, S. Alam, and S. P. Mondal, ‘A Learning-Based Optimal Decision Scenario for an Inventory Problem under a Price Discount Policy’, Systems, vol. 11, no. 5, p. 235, May 2023, doi: https://doi.org/10.3390/systems11050235.

[18] R. Karim and K. Nakade, ‘A Literature Review on the Sustainable EPQ Model, Focusing on Carbon Emissions and Product Recycling’, Logistics, vol. 6, no. 3, p. 55, Aug. 2022, doi: https://doi.org/10.3390/logistics6030055.

[19] S. Ruidas, M. R. Seikh, and P. K. Nayak, ‘An EPQ model with stock and selling price dependent demand and variable production rate in interval environment’, Int. J. Syst. Assur. Eng. Manag., vol. 11, no. 2, pp. 385–399, 2020, doi: https://doi.org/10.1007/s13198-019-00867-w.

[20] K. Richter, ‘The extended EOQ repair and waste disposal model’, Int. J. Prod. Econ., vol. 45, no. 1, pp. 443–447, 1996, doi: https://doi.org/10.1016/0925-5273(95)00143-3.

[21] G. T. Tsoulfas and C. P. Pappis, ‘Environmental principles applicable to supply chains design and operation’, J. Clean. Prod., vol. 14, no. 18, pp. 1593–1602, 2006, doi: https://doi.org/10.1016/j.jclepro.2005.05.021.

[22] K. Richter, ‘The EOQ repair and waste disposal model with variable setup numbers’, Eur. J. Oper. Res., vol. 95, no. 2, pp. 313–324, 1996, doi: https://doi.org/10.1016/0377-2217(95)00276-6.

[23] M. Stevenson, L. C. Hendry, and B. G. Kingsman †, ‘A review of production planning and control: the applicability of key concepts to the make-to-order industry’, Int. J. Prod. Res., vol. 43, no. 5, pp. 869–898, Mar. 2005, doi: https://doi.org/10.1080/0020754042000298520.

[24] D. M. Utama, F. F. Abdullah, I. Amallynda, and T. Baroto, ‘Integrated production-inventory model for multi-item raw materials with exponential quality degradation: a real case study’, OPSEARCH, vol. 61, no. 4, pp. 1862–1887, 2024, doi: https://doi.org/10.1007/s12597-024-00759-z.

[25] M. Hryhorkiv and V. Hryhorkiv, ‘Dynamic Model of One-Sector Economy Taking into Account the Environmental Behavior of Producers and Consumers’, Bull. Chernivtsi Inst. Trade Econ., vol. I, no. 85, pp. 79–88, Mar. 2022, doi: https://doi.org/10.34025/2310-8185-2022-1.85.07.

[26] S. Majid, X. Zhang, M. B. Khaskheli, F. Hong, P. J. H. King, and I. H. Shamsi, ‘Eco-Efficiency, Environmental and Sustainable Innovation in Recycling Energy and Their Effect on Business Performance: Evidence from European SMEs’, Sustainability, vol. 15, no. 12, p. 9465, Jun. 2023, doi: https://doi.org/10.3390/su15129465.

[27] S. V. Wijaya, Z. J. H. Tarigan, and H. Siagian, ‘The role of top management commitment, employee empowerment and total quality management in production waste management and enhancing firm performance’, Uncertain Supply Chain Manag., vol. 11, no. 3, pp. 1369–1382, 2023, doi: https://doi.org/10.5267/j.uscm.2023.3.011.

[28] V. R. Soleymanfar, A. Makui, A. A. Taleizadeh, and R. Tavakkoli-Moghaddam, ‘Sustainable EOQ and EPQ models for a two-echelon multi-product supply chain with return policy’, Environ. Dev. Sustain., vol. 24, no. 4, pp. 5317–5343, 2022, doi: https://doi.org/10.1007/s10668-021-01660-1.

[29] S. Sala, A. Anton, S. J. McLaren, B. Notarnicola, E. Saouter, and U. Sonesson, ‘In quest of reducing the environmental impacts of food production and consumption’, J. Clean. Prod., vol. 140, pp. 387–398, 2017, doi: https://doi.org/10.1016/j.jclepro.2016.09.054.

[30] M. Pervin, S. K. Roy, P. Sannyashi, and G.-W. Weber, ‘Sustainable inventory model with environmental impact for non-instantaneous deteriorating items with composite demand’, RAIRO - Oper. Res., vol. 57, no. 1, pp. 237–261, Jan. 2023, doi: https://doi.org/10.1051/ro/2023005.

[31] I. N. Fadlil, R. Novitasari, and W. A. Jauhari, ‘Sustainable economic production quantity model with rework and product return policy’, in AIP Conference Proceedings, Apr. 2020, p. 030078. doi: https://doi.org/10.1063/5.0000655.

[32] A. Paul, M. Pervin, R. V. Pinto, S. K. Roy, N. Maculan, and G. W. Weber, ‘Effects of multiple prepayments and green investment on an EPQ model’, J. Ind. Manag. Optim., vol. 19, no. 9, pp. 6688–6704, 2023, doi: https://doi.org/10.3934/jimo.2022234.

[33] E. Bazan, M. Y. Jaber, and S. Zanoni, ‘A review of mathematical inventory models for reverse logistics and the future of its modeling: An environmental perspective’, Appl. Math. Model., vol. 40, no. 5, pp. 4151–4178, 2016, doi: https://doi.org/10.1016/j.apm.2015.11.027.

[34] B. K. Debnath, P. Majumder, and U. K. Bera, ‘A FEPQ model of sustainable items with time and stock dependent demand under trade credit policy’, Int. J. Oper. Res., vol. 41, no. 1, pp. 27–52, Jan. 2021, doi: https://doi.org/10.1504/IJOR.2021.115420.

[35] D. M. Utama, I. R. Kusuma, I. Amallynda, T. Baroto, and W. A. Jauhari, ‘A single-vendor multi-buyer inventory model with multiple raw material and quality degradation: A case study on agri-food industry’, Results Control Optim., vol. 14, p. 100353, 2024, doi: https://doi.org/10.1016/j.rico.2023.100353.

[36] M. Rahaman, R. M. S. Abdulaal, O. A. Bafail, M. Das, S. Alam, and S. P. Mondal, ‘An Insight into the Impacts of Memory, Selling Price and Displayed Stock on a Retailer’s Decision in an Inventory Management Problem’, Fractal Fract., vol. 6, no. 9, p. 531, Sep. 2022, doi: https://doi.org/10.3390/fractalfract6090531.

[37] M. Rahaman, S. P. Mondal, S. Alam, S. K. De, and A. Ahmadian, ‘Study of a Fuzzy Production Inventory Model with Deterioration Under Marxian Principle’, Int. J. Fuzzy Syst., vol. 24, no. 4, pp. 2092–2106, 2022, doi: https://doi.org/10.1007/s40815-021-01245-0.

[38] A. K. Manna, B. Das, and S. Tiwari, ‘Impact of carbon emission on imperfect production inventory system with advance payment base free transportation’, RAIRO - Oper. Res., vol. 54, no. 4, pp. 1103–1117, Jul. 2020, doi: https://doi.org/10.1051/ro/2019015.

[39] S. Sinha and N. M. Modak, ‘An EPQ model in the perspective of carbon emission reduction’, Int. J. Math. Oper. Res., vol. 14, no. 3, pp. 338–358, 2019, doi: https://doi.org/10.1504/IJMOR.2019.099382.

[40] A. H. Md Mashud, M. Pervin, U. Mishra, Y. Daryanto, M.-L. Tseng, and M. K. Lim, ‘A sustainable inventory model with controllable carbon emissions in green-warehouse farms’, J. Clean. Prod., vol. 298, p. 126777, 2021, doi: https://doi.org/10.1016/j.jclepro.2021.126777.

[41] H. Barman, M. Pervin, and S. K. Roy, ‘Impacts of green and preservation technology investments on a sustainable EPQ model during COVID-19 pandemic’, RAIRO - Oper. Res., vol. 56, no. 4, pp. 2245–2275, Jul. 2022, doi: https://doi.org/10.1051/ro/2022102.

[42] C. H. Glock, M. Y. Jaber, and C. Searcy, ‘Sustainability strategies in an EPQ model with price‐ and quality‐sensitive demand’, Int. J. Logist. Manag., vol. 23, no. 3, pp. 340–359, Jan. 2012, doi: https://doi.org/10.1108/09574091211289219.

[43] S. Kundu and T. Chakrabarti, ‘Impact of carbon emission policies on manufacturing, remanufacturing and collection of used item decisions with price dependent return rate’, OPSEARCH, vol. 55, no. 2, pp. 532–555, 2018, doi: https://doi.org/10.1007/s12597-018-0336-y.

[44] Y.-H. Chiang Li, L. L. Sy, K. C. Lomibao, J. D. German, and H. M. Wee, ‘A Survey on Multi-Product Sustainable Economic Production Quantity Model Considering Wastewater Emission Costs’, IOP Conf. Ser. Mater. Sci. Eng., vol. 730, no. 1, p. 12068, 2020, doi: https://doi.org/10.1088/1757-899X/730/1/012068.

[45] D. M. Utama, S. Rubiyanti, and R. W. Wardana, ‘Optimization Multi-Item Lot Sizing Model involve Transportation and Capacity Constraint under Stochastic Demand using Aquila Optimizer’, J. Tek. Ind., vol. 24, no. 1, pp. 31–50, Mar. 2023, doi: https://doi.org/10.22219/JTIUMM.Vol24.No1.31-50.

[46] A. M. A. El Saadany and M. Y. Jaber, ‘The EOQ repair and waste disposal model with switching costs’, Comput. Ind. Eng., vol. 55, no. 1, pp. 219–233, 2008, doi: https://doi.org/10.1016/j.cie.2008.01.016.

[47] S. K. De and G. C. Mahata, ‘A profit jump inventory model for imperfect quality items with receiving reparative batch and order overlapping in dense fuzzy environment’, RAIRO - Oper. Res., vol. 55, no. 2, pp. 723–744, Mar. 2021, doi: https://doi.org/10.1051/ro/2021020.

[48] G.-L. Liao, ‘Production and Maintenance Policies for an EPQ Model With Perfect Repair, Rework, Free-Repair Warranty, and Preventive Maintenance’, IEEE Trans. Syst. Man, Cybern. Syst., vol. 46, no. 8, pp. 1129–1139, Aug. 2016, doi: https://doi.org/10.1109/TSMC.2015.2465961.

[49] N. C. Mohubedu, ‘Inventory management in the electricity industry in South Africa: a case study.’, University of KwaZulu-Natal, 2017. [Online]. Available: https://researchspace.ukzn.ac.za/items/94e83ff4-f044-4002-85b0-02fa632e5d85

[50] R. Zhang and Q. Liu, ‘Low Carbon Constrained EPQ Model and Computing’, in 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), IEEE, Jul. 2018, pp. 831–835. doi: https://doi.org/10.1109/IMCCC.2018.00177.

[51] E. W. Taft, ‘The most economical production lot’, Iron Age, vol. 101, no. 18, pp. 1410–1412, 1918.

[52] Y.-S. P. Chiu, C.-A. K. Lin, H.-H. Chang, and V. Chiu, ‘Mathematical modelling for determining economic batch size and optimal number of deliveries for EPQ model with quality assurance’, Math. Comput. Model. Dyn. Syst., vol. 16, no. 4, pp. 373–388, Nov. 2010, doi: https://doi.org/10.1080/13873954.2010.511199.

[53] R. H. Ballou, Instructor’s Manual to Business Logistics Management. Pearson Prentice Hall, 1998. [Online]. Available: https://books.google.co.id/books?id=SOfHPQAACAAJ

[54] K. Kostić, ‘Inventory control as a discrete system control for the fixed-order quantity system’, Appl. Math. Model., vol. 33, no. 11, pp. 4201–4214, 2009, doi: https://doi.org/10.1016/j.apm.2009.03.004.

[55] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, ‘Hybrid metaheuristics in combinatorial optimization: A survey’, Appl. Soft Comput., vol. 11, no. 6, pp. 4135–4151, 2011, doi: https://doi.org/10.1016/j.asoc.2011.02.032.

[56] K. Bilen et al., ‘Energy production, consumption, and environmental pollution for sustainable development: A case study in Turkey’, Renew. Sustain. Energy Rev., vol. 12, no. 6, pp. 1529–1561, 2008, doi: https://doi.org/10.1016/j.rser.2007.03.003.

[57] P. Wu, Y. Jin, Y. Shi, and H. Shyu, ‘The impact of carbon emission costs on manufacturers’ production and location decision’, Int. J. Prod. Econ., vol. 193, pp. 193–206, 2017, doi: https://doi.org/10.1016/j.ijpe.2017.07.005.

[58] X. Yang, H. Li, F. Wallin, Z. Yu, and Z. Wang, ‘Impacts of emission reduction and external cost on natural gas distribution’, Appl. Energy, vol. 207, pp. 553–561, 2017, doi: https://doi.org/10.1016/j.apenergy.2017.06.005.

[59] M. Pervin, S. K. Roy, and G. W. Weber, ‘An integrated inventory model with variable holding cost under two levels of trade-credit policy’, Numer. Algebr. Control Optim., vol. 8, no. 2, pp. 169–191, 2018, doi: https://doi.org/10.3934/naco.2018010.

[60] S. K. Roy, M. Pervin, and G. Wilhelm Weber, ‘Imperfection with inspection policy and variable demand under trade-credit: A deteriorating inventory model’, Numer. Algebr. Control Optim., vol. 10, no. 1, pp. 45–74, 2020, doi: https://doi.org/10.3934/naco.2019032.

Downloads

Published

2024-12-27

Issue

Section

Research Article

How to Cite

[1]
D. M. . Utama and I. H. Lubis, “Economic production quantity model involving repair, waste disposal, electricity tariff, and emissions tax”, j. sist. manaj. ind., vol. 8, no. 2, pp. 155–169, Dec. 2024, doi: 10.30656/jsmi.v8i2.8961.