School Building's Thermal Comfort Analysis: A Community Service Implementation to Develop Comfortable Learning Environment

Authors

  • Agil Fitri Handayani Universitas Negeri Malang https://orcid.org/0000-0003-3754-4047
  • Dyah Hayu Rosyidah PT. Industri Kereta Api
  • Ninda Lufita Sari Universitas Negeri Malang
  • Dzul Fikri Muhammad Universitas Negeri Malang
  • Ridwan Muhammad Rifai Universitas Negeri Malang
  • Fadila Fitria Wulandari Universitas Negeri Malang

DOI:

https://doi.org/10.30656/jpmwp.v9i2.10781

Keywords:

Building Design, Community Service, School Building, Thermal Comfort

Abstract

The quality of teaching and learning activities is a key indicator of success in formal education, and the provision of comfortable classrooms plays a vital role in supporting optimal learning outcomes. This community service aimed to analyze and improve the thermal comfort of the proposed classroom design at MTs Ummu Aiman Malang, ensuring that the building meets thermal comfort standards and regulations. A 3D model of the school building was developed, and a Computational Fluid Dynamics (CFD) simulation was employed to assess indoor air distribution and airflow. Based on the theoretical analysis and simulations conducted, some alternative design optimizations suggested are choosing the color of the exterior wall paint with a light color gradation that has a good heat absorption value, using a type of double-glaze glass that has better thermal performance, adding heat insulation material to the exterior walls of the east and west sides, and modifying the opening of the window to maximize natural ventilation and improve air circulation in the classroom. By optimizing the design, the OTTV value of the MTS Ummu Aiman building was reduced from 97.07 W/m² to 33.49 W/m². In addition, the addition of openings in the window changes the temperature range in the classroom, which was previously 26.6 -29.3 °C, to a temperature range of 22.8-25.8 °C, with the air velocity falling above the occupants' heads not exceeding 0.25 m/s. The results demonstrate that design optimization and appropriate material selection significantly improve thermal comfort and energy efficiency, providing a practical reference for sustainable school building design.

Downloads

Download data is not yet available.

References

Abdullah, H. K., & Faraj, R. Q. (2022). The Effect of Exterior Wall Color on Thermal Performance of Building. Tikrit Journal of Engineering Sciences, 29(3), 15–23. https://doi.org/10.25130/tjes.29.3.2

Albab, U., & Adi, T. J. W. (2019). Energy Efficiency of Cooling Load through The Glass Facade of Office Buildings in Surabaya. IPTEK Journal of Proceedings Series, 5, 600. https://doi.org/10.12962/j23546026.y2019i5.6443

BMKG. (2024). Prakiraan Cuaca Kecamatan Lawang, Kabupaten Malang. https://www.bmkg.go.id/cuaca/prakiraan-cuaca/35.07.25

Choudhari, A., Jagadale, P. R., & Chawdhary, A. B. (2021). Computational Fluid Dynamics, An Overview. International Research Journal of Engineering and Technology, 8(9), 1817–1821. https://www.irjet.net/archives/V8/i9/IRJET-V8I9258.pdf

Deshmukh, M., & Yadav, M. (2025). Optimizing Thermal Efficiency of Building Envelopes with Sustainable Composite Materials. Buildings, 15(2), 230. https://doi.org/10.3390/buildings15020230

Kemendikdasmen. (2024). Badan Penyelenggara Satuan Pendidikan (Yayasan). Kemendikdasmen. https://data.kemendikdasmen.go.id/data-induk/yayasan/jumlah

Kirme, S. K., & Kapse, V. S. (2023). Impact of Building Orientation and Built Area on Heat Gain in Residential Buildings. Journal of Technology, 11(12), 457–474. https://drive.google.com/file/d/1N86d478zBAxS4lZGuNSyVGkQBGA65QoF/view

Kouhirostami, M. (2018). Natural Ventilation Through Windows in a Classroom (CFD Analysis Cross-Ventilation of Asymmetric Openings: Impact of Wind Direction and Louvers Design). Thesis. https://doi.org/10.6084/m9.figshare.12733031

Latifah, N. L., Zulwaqar, K. H., Andini, K., & Nisa, A. S. (2022). Building Envelope Design with Glass Curtain Wall to Reduce OTTV, Study Case: WU Tower Building at Bandung, Indonesia. International Journal of Built Environment and Scientific Research, 6(2), 97. https://doi.org/10.24853/ijbesr.6.2.97-110

Liu, L., Ma, Y., Huang, R., Jia, M., Liu, G., & Zheng, W. (2024). Field measurement study of indoor thermal environment of badminton halls in a hot summer and cold winter region in different seasons in China. Heliyon, 10(15), e34883. https://doi.org/10.1016/j.heliyon.2024.e34883

Mulyadi, R. (2023). Kinerja Fasad Selubung Ganda dalam Menurunkan Konsumsi Energi untuk Pendingin pada Bangunan Gedung. Jurnal Lingkungan Binaan Indonesia, 6(1), 32–37. https://doi.org/10.32315/jlbi.6.1.45

Nor Azli, M. N. A., Hariri, A., Chong, Z. Y., Khasri, M. A., Muhamad Damanhuri, A. A., Syazwan Mustafa, M. S., & Kabrein, H. (2023). Influence of Air Velocity on Thermal Comfort and Performance of Students in Naturally Ventilated Classrooms in Tropical Climate. E3S Web of Conferences, 396, 01116. https://doi.org/10.1051/e3sconf/202339601116

Peraturan Menteri Pekerjaan Umum. (2006). Pedoman Persyaratan Teknik Bangunan Gedung. https://jdih.pu.go.id/internal/assets/plugins/pdfjs/web/viewer.html?file=https://jdih.pu.go.id/internal/assets/assets/produk/PermenPUPR/2006/12/PerMenPU29-2006.pdf

Ramalingam Rethnam, O., & Thomas, A. (2024). A physics-informed deep learning-based urban building thermal comfort modeling and prediction framework for identifying thermally vulnerable building stock. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-02-2024-0047

Reiniche, S., Newman, M., Gowri, K., Peterson, J., Marriott, C. E., Grasso, M., Reindl, D., Abramson, D. S., Grzywacz, C. M., Setty, B. S., Amrane, K., Hall, R. L., Tauby, J. R., Baker, R. G., Jayaraman, N. R., Vallort, J. K., Bohanon, H. R., Jones, B., Walter, W. F., … BB. (2010). ASHRAE 2010-2011. www.ashrae.org. https://www.ashrae.org/file library/technical resources/standards and guidelines/standards addenda/62-1_2010-2011addendasupplement_final.pdf

Romero, P., Miranda, M. T., Montero, I., Sepúlveda, F. J., & Valero-Amaro, V. (2023). Critical Review of the Literature on Thermal Comfort in Educational Buildings: Study of the Influence of the COVID-19 Pandemic. Indoor Air, 2023, 1–36. https://doi.org/10.1155/2023/8347598

Saputri, R. Y., Oktaria, S. D., & Muhisom. (2023). Pengelolaan Sarana dan Prasarana Pendidikan dalam Membangun Sekolah yang Efektif di Sekolah Dasar. Jurnal PGSD: Jurnal Ilmiah Pendidikan Guru Sekolah Dasar, 16(2), 141–147. https://doi.org/10.33369/pgsd.16.2.141-147

Shen, H., Tan, H., & Tzempelikos, A. (2011). The effect of reflective coatings on building surface temperatures, indoor environment and energy consumption—An experimental study. Energy and Buildings, 43(2–3), 573–580. https://doi.org/10.1016/j.enbuild.2010.10.024

Sofialidis, D. (2013). Express Introductory Training in ANSYS Fluent Lecture 2 Boundary Conditions & Solver Settings. In Faculty of Mechanical Engineering. https://events.prace-ri.eu/event/156/contributions/6/attachments/65/89/Fluent-Intro_14.5_L02_BoundaryConditionsSolverSettings.pdf

Son, S., & Jang, C.-M. (2021). Air Ventilation Performance of School Classrooms with Respect to the Installation Positions of Return Duct. Sustainability, 13(11), 6188. https://doi.org/10.3390/su13116188

Widiastuti, R., Hasan, M. I., Bramiana, C. N., & Pramesti, P. U. (2020). CFD Simulation on the Natural Ventilation and Building Thermal Performance. IOP Conference Series: Earth and Environmental Science, 448(1), 012004. https://doi.org/10.1088/1755-1315/448/1/012004

Xue, F., & Zhao, J. (2021). Building Thermal Comfort Research Based on Energy‐Saving Concept. Advances in Materials Science and Engineering, 2021(1). https://doi.org/10.1155/2021/7132437

Zuhri, S., Ghozali, I., & Subiyantoro, H. (2024). Building Performance Strategy to Achieve Thermal Comfort on Post-Disaster Design. Revista de Gestão Social e Ambiental, 18(7), e08397. https://doi.org/10.24857/rgsa.v18n7-182

Downloads

Published

2025-11-15

How to Cite

Handayani, A. F., Rosyidah, D. H. ., Sari, N. L. ., Muhammad, D. F. ., Rifai, R. M. ., & Wulandari, F. F. . (2025). School Building’s Thermal Comfort Analysis: A Community Service Implementation to Develop Comfortable Learning Environment. Wikrama Parahita : Jurnal Pengabdian Masyarakat, 9(2), 162-170. https://doi.org/10.30656/jpmwp.v9i2.10781