Life cycle assessment analysis of kenaf cultivation in bonorowo land, laren, lamongan

  • Desrina Yusi Irawati Universitas Katolik Darma Cendika, Surabaya, Indonesia
  • Lusi Mei Cahya Wulandari Universitas Katolik Darma Cendika, Surabaya, Indonesia
Abstract views: 131 , PDF downloads: 59
Keywords: Kenaf Cultivation, Life Cycle Assessment (LCA), Environmental Impact


The largest kenaf culture in Indonesia is in Laren, Lamongan. Kenaf plants are suitable to be planted in the Bonorowo field. The less potential land conditions make the cultivation of kenaf plants must use chemicals. The use of chemicals has the potential to harm the environment. The approach to identifying and analyzing environmental impacts is the Life Cycle Assessment (LCA). LCA is one method to find out the life cycle of agriculture. LCA stages are Goal and Scope Definition, Life Cycle Inventory, Life Cycle Impact Assessment, and Interpretation. Environmental impact measurement is based on fifteen categories grouped into four categories. LCA processing results show the use of urea fertilizer has the most significant negative impact on the environment. The biggest impact category due to the use of urea fertilizer is aquatic ecotoxicity. The use of urea fertilizer affects the types of resources, climate change, ecosystem quality, and human health. Of the four groups, which have the highest value, are the resource group. The use of urea fertilizer has the most significant role in the success of kenaf cultivation because kenaf cultivation requires more N elements to improve the quality of kenaf stems. The use of organic fertilizer can be an option to reduce the use of urea fertilizer.


Download data is not yet available.


[1] S. Wibowo, “Budidaya Kenaf,” in Lembar Informasi Pertanian, Loka Pengkajian Teknologi Pertanian Samarinda, Departemen Pertanian, 2000, available at:

[2] R. D. Purwati, “Plasma nutfah kenaf (Hibiscus cannabinus L.),” Monogr. Balittas, vol. 1, no. 2, pp. 13–26, 2009, available at: nutfah kenaf.pdf.

[3] M. N. Haryono, H. Syahbuddin, and M. Sarwani, Lahan Rawa, Penelitian dan Pengembangan. Kementerian Pertanian: Badan Penelitian dan Pengembangan Pertanian, 2013, available at:

[4] D. K. Maheshwari, S. Dheeman, and M. Agarwal, “Decomposition of Organic Materials into High Value Compost for Sustainable Crop Productivity,” in Composting for Sustainable Agriculture, Springer, 2014, pp. 245–267, doi: 10.1007/978-3-319-08004-8_12.

[5] C. Thonar et al., “Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils,” Chem. Biol. Technol. Agric., vol. 4, no. 1, p. 7, Dec. 2017, doi: 10.1186/s40538-017-0088-6.

[6] Z. Cheng, E. L. McCoy, and P. S. Grewal, “Water, sediment, and nutrient runoff from urban lawns established on disturbed subsoil or topsoil and managed with inorganic or organic fertilizers,” Urban Ecosyst., vol. 17, no. 1, pp. 277–289, Mar. 2014, doi: 10.1007/s11252-013-0300-9.

[7] S. Huang, L. Wang, L. Liu, Q. Fu, and D. Zhu, “Nonchemical pest control in China rice: a review,” Agron. Sustain. Dev., vol. 34, no. 2, pp. 275–291, Apr. 2014, doi: 10.1007/s13593-013-0199-9.

[8] R. Salomone, G. Saija, G. Mondello, A. Giannetto, S. Fasulo, and D. Savastano, “Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens,” J. Clean. Prod., vol. 140, pp. 890–905, Jan. 2017, doi: 10.1016/j.jclepro.2016.06.154.

[9] C. Chai, “Life Cycle Assessment: An Intoduction to Concepts and Applications,” AZoCleantech, pp. 1–4, 2014, available at:

[10] A. Nikkhah, M. Khojastehpour, B. Emadi, A. Taheri-Rad, and S. Khorramdel, “Environmental impacts of peanut production system using life cycle assessment methodology,” J. Clean. Prod., vol. 92, pp. 84–90, Apr. 2015, doi: 10.1016/j.jclepro.2014.12.048.

[11] M. F. Astudillo, G. Thalwitz, and F. Vollrath, “Modern analysis of an ancient integrated farming arrangement: life cycle assessment of a mulberry dyke and pond system,” Int. J. Life Cycle Assess., vol. 20, no. 10, pp. 1387–1398, Oct. 2015, doi: 10.1007/s11367-015-0950-3.

[12] A. Nikkhah, “Life cycle assessment of the agricultural sector in Iran (2007-2014),” Environ. Prog. Sustain. Energy, vol. 37, no. 5, pp. 1750–1757, Sep. 2018, doi: 10.1002/ep.12831.

[13] P. Goglio et al., “Development of Crop.LCA, an adaptable screening life cycle assessment tool for agricultural systems: A Canadian scenario assessment,” J. Clean. Prod., vol. 172, pp. 3770–3780, Jan. 2018, doi: 10.1016/j.jclepro.2017.06.175.

[14] M. J. Zarei, N. Kazemi, and A. Marzban, “Life cycle environmental impacts of cucumber and tomato production in open-field and greenhouse,” J. Saudi Soc. Agric. Sci., vol. 18, no. 3, pp. 249–255, Jul. 2019, doi: 10.1016/j.jssas.2017.07.001.

[15] M. Tayefeh, S. M. Sadeghi, S. A. Noorhosseini, J. Bacenetti, and C. A. Damalas, “Environmental impact of rice production based on nitrogen fertilizer use,” Environ. Sci. Pollut. Res., vol. 25, no. 16, pp. 15885–15895, Jun. 2018, doi: 10.1007/s11356-018-1788-6.

[16] C. Boland et al., “A Life Cycle Assessment of Natural Fiber Reinforced Composites in Automotive Applications,” in Conference Proceeding 2014 SAE World Congress, 2015, pp. 179–189, doi: 10.4271/2014-01-1959.

[17] S. M. Batouli, Y. Zhu, M. Nar, and N. A. D’Souza, “Environmental performance of kenaf-fiber reinforced polyurethane: a life cycle assessment approach,” J. Clean. Prod., vol. 66, pp. 164–173, Mar. 2014, doi: 10.1016/j.jclepro.2013.11.064.

[18] A. Nikkhah, S. Firouzi, M. El Haj Assad, and S. Ghnimi, “Application of analytic hierarchy process to develop a weighting scheme for life cycle assessment of agricultural production,” Sci. Total Environ., vol. 665, pp. 538–545, May 2019, doi: 10.1016/j.scitotenv.2019.02.170.

[19] M. M. Rahman and B. K. Bala, “Ecological and environmental sustatinability of jute production systems in Bangladesh: life cycle assessment.,” SAARC J. Agric., vol. 7, no. 2, pp. 51–66, 2009, available at:

[20] A. L. Fernando, “Environmental Aspects of Kenaf Production and Use, Kenaf: a multi-purpose crop for several industrial applications,” in Green Energy and Technology, Springer, 2013, pp. 83–104, doi: 10.1007/978-1-4471-5067-1_5.

[21] O. Jolliet, H. Sébastien, A. D. Schryver, and M. Manuele, Impact 2002+: User Guide. Switzerland: Swiss Federal Institute of Technology Lausanne (EPFL), 2012, available at:

[22] International Standards Organization, Environmental Management: Life Cycle Assessment; Principles and Framework. Principles and Framework ISO 14040, ISO Press, 2006, available at:

[23] WHO-World Health Organization, “Pesticide residues in food-2000. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group.,” FAO Plant Production and Protection Paper, 163, 2001, available at:

[24] T. Ghosh, “Jute manual,” Agric. Res. lost. Yesin. Burma, 1978, available at: Google Scholar.

[25] H. Pranoto, “Respons Pertumbuhan dan Kualitas Beberapa Varietas Kenaf (Hibiscus Cannabinus L.) terhadap Pemberian Pupuk N dan Kotoran Ayam,” Ziraa’ah Maj. Ilm. Pertan., vol. 41, no. 1, pp. 27–32, 2016, available at:

[26] Rusmini, R. R. Manullang, and Daryono, “Peningkatan Produksi Serat Kenaf Dengan Pemberian Pupuk Organik Kompos Kulit Udang Dan Pestisida Nabati Keong Mas,” in Prosiding Seminar Nasional Ke 1 Tahun 2017, 2017, pp. 46–55, available at:

[27] B. Santoso, “Pengaruh bahan organik dan pupuk NPK terhadap hasil serat rosela di lahan podsolik merah kuning Kalimantan Selatan,” J. Penelit. Tanam. Ind., vol. 11, no. 3, pp. 85–92, 2005, available at:

How to Cite
Irawati, D. Y., & Wulandari, L. M. C. (2019). Life cycle assessment analysis of kenaf cultivation in bonorowo land, laren, lamongan. Jurnal Sistem Dan Manajemen Industri, 3(2), 89-97.