A hybrid fuzzy SWARA-COPRAS framework to evaluate sustainable co-firing in coal power plants: A case study from Indonesia

Authors

DOI:

https://doi.org/10.30656/jsmi.v9i2.10859

Keywords:

Co-firing, Fuzzy COPRAS, Fuzzy SWARA, Power plant

Abstract

The transition to sustainable energy encourages various countries, including Indonesia, to adopt Co-Firing technology to reduce carbon emissions without requiring significant investments in power plant infrastructure. The selection of appropriate biomass materials, based on sustainability dimensions, significantly influences the success of Co-Firing implementation. This study proposes a hybrid framework that integrates the Fuzzy SWARA and Fuzzy COPRAS methods to holistically evaluate Co-Firing alternatives, considering technical, economic, environmental, social, and supply chain aspects. A case study was conducted at a power plant in Indonesia, involving four experts from the industry and academia to assess 23 sustainability sub-criteria and five biomass alternatives. The results indicate that the sub-criteria of water footprint, supplier reliability, local job creation, and co-firing retrofit cost are dominant factors in biomass selection. This research selected Alternative 2 (wood chips) as the most effective biomass material for implementation at power plants in Indonesia. Additionally, sensitivity analysis confirmed that biomass is the most stable alternative to changes in criteria weights, which offers high flexibility in the supply chain and circular economic potential. These findings contribute theoretically to developing multi-criteria decision-making methods based on fuzzy logic and practically support policymakers and industry in planning sustainable and adaptive Co-Firing strategies in the face of uncertainty.

Downloads

Download data is not yet available.

References

[1] S. Chen, P. Liu, and Z. Li, “Low carbon transition pathway of power sector with high penetration of renewable energy,” Renew. Sustain. Energy Rev., vol. 130, p. 109985, Sep. 2020, doi: https://doi.org/10.1016/j.rser.2020.109985.

[2] N. A. Pambudi et al., “Renewable Energy in Indonesia: Current Status, Potential, and Future Development,” Sustainability, vol. 15, no. 3, p. 2342, Jan. 2023, doi: https://doi.org/10.3390/su15032342.

[3] A. Androniceanu and O. M. Sabie, “Overview of Green Energy as a Real Strategic Option for Sustainable Development,” Energies, vol. 15, no. 22, p. 8573, Nov. 2022, doi: https://doi.org/10.3390/en15228573.

[4] K. R. Abbasi, M. Shahbaz, J. Zhang, M. Irfan, and R. Alvarado, “Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy,” Renew. Energy, vol. 187, pp. 390–402, 2022, doi: https://doi.org/10.1016/j.renene.2022.01.066.

[5] M. Petrović-Ranđelović, N. Kocić, and B. Stojanović-Ranđelović, “The importance of renewable energy sources for sustainable development,” Econ. Sustain. Dev., vol. 4, no. 2, pp. 15–24, 2020, doi: https://doi.org/10.5937/ESD2002016P.

[6] B. Yu, D. Fang, K. Xiao, and Y. Pan, “Drivers of renewable energy penetration and its role in power sector’s deep decarbonization towards carbon peak,” Renew. Sustain. Energy Rev., vol. 178, p. 113247, May 2023, doi: https://doi.org/10.1016/j.rser.2023.113247.

[7] I. Sotnyk et al., “Determining the Optimal Directions of Investment in Regional Renewable Energy Development,” Energies, vol. 15, no. 10, p. 3646, May 2022, doi: https://doi.org/10.3390/en15103646.

[8] J. Vahnberg and J. von Platten, “Energy poverty, power and capital: Moving beyond descriptive theories through the Swedish institutional case,” Energy Res. Soc. Sci., vol. 125, p. 104100, Jul. 2025, doi: https://doi.org/10.1016/j.erss.2025.104100.

[9] C. Ghenai, M. Albawab, and M. Bettayeb, “Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method,” Renew. Energy, vol. 146, pp. 580–597, 2020, doi: https://doi.org/10.1016/j.renene.2019.06.157.

[10] M. A. Rosen, “Energy Sustainability with a Focus on Environmental Perspectives,” Earth Syst. Environ., vol. 5, no. 2, pp. 217–230, Jun. 2021, doi: https://doi.org/10.1007/s41748-021-00217-6.

[11] P. Gabrielli et al., “Net-zero emissions chemical industry in a world of limited resources,” One Earth, vol. 6, no. 6, pp. 682–704, Jun. 2023, doi: https://doi.org/10.1016/j.oneear.2023.05.006.

[12] H. Yazdani, M. Baneshi, and M. Yaghoubi, “Techno-economic and environmental design of hybrid energy systems using multi-objective optimization and multi-criteria decision making methods,” Energy Convers. Manag., vol. 282, p. 116873, Apr. 2023, doi: https://doi.org/10.1016/j.enconman.2023.116873.

[13] F. Parvaneh and A. Hammad, “Application of Multi-Criteria Decision-Making (MCDM) to Select the Most Sustainable Power-Generating Technology,” Sustainability, vol. 16, no. 8, p. 3287, Apr. 2024, doi: https://doi.org/10.3390/su16083287.

[14] S. Ahmad and R. M. Tahar, “Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia,” Renew. Energy, vol. 63, pp. 458–466, Mar. 2014, doi: https://doi.org/10.1016/j.renene.2013.10.001.

[15] R. Kiani Mavi, D. Gengatharen, N. Kiani Mavi, R. Hughes, A. Campbell, and R. Yates, “Sustainability in Construction Projects: A Systematic Literature Review,” Sustainability, vol. 13, no. 4, p. 1932, Feb. 2021, doi: https://doi.org/10.3390/su13041932.

[16] J. Ma, J. D. Harstvedt, R. Jaradat, and B. Smith, “Sustainability driven multi-criteria project portfolio selection under uncertain decision-making environment,” Comput. Ind. Eng., vol. 140, p. 106236, Feb. 2020, doi: https://doi.org/10.1016/j.cie.2019.106236.

[17] N. Dobrovolskienė, A. Pozniak, and M. Tvaronavičienė, “Assessment of the Sustainability of a Real Estate Project Using Multi-Criteria Decision Making,” Sustainability, vol. 13, no. 8, p. 4352, Apr. 2021, doi: https://doi.org/10.3390/su13084352.

[18] M. Filonchyk, M. P. Peterson, L. Zhang, V. Hurynovich, and Y. He, “Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O,” Sci. Total Environ., vol. 935, p. 173359, Jul. 2024, doi: https://doi.org/10.1016/j.scitotenv.2024.173359.

[19] S. Bolan et al., “Impacts of climate change on the fate of contaminants through extreme weather events,” Sci. Total Environ., vol. 909, p. 168388, Jan. 2024, doi: https://doi.org/10.1016/j.scitotenv.2023.168388.

[20] M. Umar, S. Farid, and M. A. Naeem, “Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis,” Energy, vol. 240, p. 122702, Feb. 2022, doi: https://doi.org/10.1016/j.energy.2021.122702.

[21] M. G. J. den Elzen et al., “Uncertainties around net‐zero climate targets have major impact on greenhouse gas emissions projections,” Ann. N. Y. Acad. Sci., vol. 1544, no. 1, pp. 209–222, Feb. 2025, doi: https://doi.org/10.1111/nyas.15285.

[22] A. Elwan, Y. Z. Arief, Z. Adzis, and N. A. Muhamad, “Life Cycle Assessment-based Environmental Impact Comparative Analysis of Composting and Electricity Generation from Solid Waste,” Energy Procedia, vol. 68, pp. 186–194, Apr. 2015, doi: https://doi.org/10.1016/j.egypro.2015.03.247.

[23] B. Yang et al., “Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives,” Energy Econ., vol. 96, p. 105173, Apr. 2021, doi: https://doi.org/10.1016/j.eneco.2021.105173.

[24] Y. A. Solangi, C. Longsheng, and S. A. A. Shah, “Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach,” Renew. Energy, vol. 173, pp. 209–222, Aug. 2021, doi: https://doi.org/10.1016/j.renene.2021.03.141.

[25] M. Kumar and C. Samuel, “Selection of Best Renewable Energy Source by Using VIKOR Method,” Technol. Econ. Smart Grids Sustain. Energy, vol. 2, no. 1, p. 8, Dec. 2017, doi: https://doi.org/10.1007/s40866-017-0024-7.

[26] L. Jurík, N. Horňáková, E. Šantavá, D. Cagáňová, and J. Sablik, “Application of AHP method for project selection in the context of sustainable development,” Wirel. Networks, vol. 28, no. 2, pp. 893–902, Feb. 2022, doi: https://doi.org/10.1007/s11276-020-02322-2.

[27] G. Bektur, “A hybrid fuzzy MCDM approach for sustainable project portfolio selection problem and an application for a construction company,” İktisadi ve İdari Bilim. Fakültesi Derg., vol. 23, no. 2, pp. 182–194, Jun. 2021, doi: https://doi.org/10.33707/akuiibfd.911236.

[28] M. M. Alam Bhuiyan and A. Hammad, “A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural Material for a Multistory Building Construction,” Sustainability, vol. 15, no. 4, p. 3128, Feb. 2023, doi: https://doi.org/10.3390/su15043128.

[29] C. S. Dhanalakshmi, M. Mathew, and P. Madhu, “Biomass Material Selection for Sustainable Environment by the Application of Multi-Objective Optimization on the Basis of Ratio Analysis (MOORA),” Singapore: Springer Singapore, 2021, pp. 345–354. doi: https://doi.org/10.1007/978-981-15-9809-8_28.

[30] P. Mojaver, S. Khalilarya, and A. Chitsaz, “Multi-objective optimization and decision analysis of a system based on biomass fueled SOFC using couple method of entropy/VIKOR,” Energy Convers. Manag., vol. 203, p. 112260, Jan. 2020, doi: https://doi.org/10.1016/j.enconman.2019.112260.

[31] E. Monedero, A. Pazo, R. Collado, O. J. Dura, and J. J. Hernández, “Analysis of fouling in domestic boilers fueled with non-woody biomass,” Renew. Energy, vol. 226, p. 120459, May 2024, doi: https://doi.org/10.1016/j.renene.2024.120459.

[32] P. Motevakel, C. Roldán-Blay, C. Roldán-Porta, G. Escrivá-Escrivá, and D. Dasí-Crespo, “Strategic Resource Planning for Sustainable Biogas Integration in Hybrid Renewable Energy Systems,” Appl. Sci., vol. 15, no. 2, p. 642, Jan. 2025, doi: https://doi.org/10.3390/app15020642.

[33] H. El-houari et al., “Feasibility evaluation of a hybrid renewable power generation system for sustainable electricity supply in a Moroccan remote site,” J. Clean. Prod., vol. 277, p. 123534, Dec. 2020, doi: https://doi.org/10.1016/j.jclepro.2020.123534.

[34] A. Ahmudi et al., “Optimizing Potential Supply Chain of Biomass Agricultural Waste for Co-firing of Coal Power Plant Using MCDA, GIS, and Linear Programming in the Java and Sumatra Islands, Indonesia,” Leuser J. Environ. Stud., vol. 3, no. 1, pp. 1–19, Jan. 2025, doi: https://doi.org/10.60084/ljes.v3i1.249.

[35] T.-C. Wang and H.-D. Lee, “Developing a fuzzy TOPSIS approach based on subjective weights and objective weights,” Expert Syst. Appl., vol. 36, no. 5, pp. 8980–8985, Jul. 2009, doi: https://doi.org/10.1016/j.eswa.2008.11.035.

[36] A. Kumar et al., “A review of multi criteria decision making (MCDM) towards sustainable renewable energy development,” Renew. Sustain. Energy Rev., vol. 69, pp. 596–609, Mar. 2017, doi: https://doi.org/10.1016/j.rser.2016.11.191.

[37] A. Rabajczyk and G. Rabajczyk, “Managing CO₂ Emission in the Energy Sector and Climate Policy,” Saf. Fire Technol., vol. 58, no. 2, pp. 6–21, 2021, doi: https://doi.org/10.12845/sft.58.2.2021.1.

[38] R. Krishankumar, S. S. Nimmagadda, P. Rani, A. R. Mishra, K. S. Ravichandran, and A. H. Gandomi, “Solving renewable energy source selection problems using a q-rung orthopair fuzzy-based integrated decision-making approach,” J. Clean. Prod., vol. 279, p. 123329, Jan. 2021, doi: https://doi.org/10.1016/j.jclepro.2020.123329.

[39] H. A. M. Salman, “Optimizing Biomass Pre-Treatment Technologies for BBJP Plants in Indonesia: A Multi-Criteria Decision Making Approach,” Adv. Sustain. Sci. Eng. Technol., vol. 6, no. 1, p. 02401021, Jan. 2024, doi: https://doi.org/10.26877/asset.v6i1.17877.

[40] H. Howari, M. Parvez, O. Khan, A. Alhodaib, A. Mallah, and Z. Yahya, “Multi-Objective Optimization for Ranking Waste Biomass Materials Based on Performance and Emission Parameters in a Pyrolysis Process—An AHP–TOPSIS Approach,” Sustainability, vol. 15, no. 4, p. 3690, Feb. 2023, doi: https://doi.org/10.3390/su15043690.

[41] J. A. Hernández-Torres, D. Sánchez-Lozano, R. Sánchez-Herrera, D. Vera, and J. P. Torreglosa, “Integrated multi-criteria decision-making approach for power generation technology selection in sustainable energy systems,” Renew. Energy, vol. 243, p. 122481, Apr. 2025, doi: https://doi.org/10.1016/j.renene.2025.122481.

[42] L. Kiser and L. D. Otero, “Multi-criteria decision model for selection of nuclear power plant type,” Prog. Nucl. Energy, vol. 159, p. 104647, May 2023, doi: https://doi.org/10.1016/j.pnucene.2023.104647.

[43] A. Mardani, S. Devi, M. Alrasheedi, L. Arya, M. P. Singh, and K. Pandey, “Hybrid Intuitionistic Fuzzy Entropy-SWARA-COPRAS Method for Multi-Criteria Sustainable Biomass Crop Type Selection,” Sustainability, vol. 15, no. 10, p. 7765, May 2023, doi: https://doi.org/10.3390/su15107765.

[44] N. Shatnawi, H. Abu-Qdais, and F. Abu Qdais, “Selecting renewable energy options: an application of multi-criteria decision making for Jordan,” Sustain. Sci. Pract. Policy, vol. 17, no. 1, pp. 209–219, Jan. 2021, doi: https://doi.org/10.1080/15487733.2021.1930715.

[45] T. Li, A. Li, and X. Guo, “The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods,” Energy, vol. 212, p. 118694, Dec. 2020, doi: https://doi.org/10.1016/j.energy.2020.118694.

[46] G. A. B. Marcondes and M. da S. Vilela, “Project Selection with Uncertainty Using Monte Carlo Simulation and Multi-criteria Decision Methods,” in Operations Research and Enterprise Systems, Cham: Springer International Publishing, 2022, pp. 152–170. doi: https://doi.org/10.1007/978-3-031-10725-2_8.

[47] J. L. G. San Juan, K. B. Aviso, R. R. Tan, and C. L. Sy, “A Multi-Objective Optimization Model for the Design of Biomass Co-Firing Networks Integrating Feedstock Quality Considerations,” Energies, vol. 12, no. 12, p. 2252, Jun. 2019, doi: https://doi.org/10.3390/en12122252.

[48] W. Lipka and C. Szwed, “Multi-Attribute Rating Method for Selecting a Clean Coal Energy Generation Technology,” Energies, vol. 14, no. 21, p. 7228, Nov. 2021, doi: https://doi.org/10.3390/en14217228.

[49] C. Divya, L. S. Raju, and B. Singaravel, “A Review of TOPSIS Method for Multi Criteria Optimization in Manufacturing Environment,” in Intelligent Techniques and Applications in Science and Technology, Cham: Springer International Publishing, 2020, pp. 719–727. doi: https://doi.org/10.1007/978-3-030-42363-6_84.

[50] M. A. Elleuch, M. Mallek, and A. Frikha, “Energy sources selection for sustainable energy planning using fuzzy multi-criteria group decision-making approach: Tunisia Case Study,” in 2021 International Conference on Decision Aid Sciences and Application (DASA), IEEE, Dec. 2021, pp. 613–617. doi: https://doi.org/10.1109/DASA53625.2021.9682399.

[51] H. A. A. Qdais, “Developing a decision support tool for managing sludge from wastewater treatment plants in Jordan,” Desalin. Water Treat., vol. 139, pp. 95–104, Jan. 2019, doi: https://doi.org/10.5004/dwt.2019.23286.

[52] S. A. H. Zaidi, Z. Wei, A. Gedikli, M. W. Zafar, F. Hou, and Y. Iftikhar, “The impact of globalization, natural resources abundance, and human capital on financial development: Evidence from thirty-one OECD countries,” Resour. Policy, vol. 64, p. 101476, Dec. 2019, doi: https://doi.org/10.1016/j.resourpol.2019.101476.

[53] Y.-L. Zhang et al., “Economic feasibility assessment of coal-biomass co-firing power generation technology,” Energy, vol. 296, p. 131092, Jun. 2024, doi: https://doi.org/10.1016/j.energy.2024.131092.

[54] M. D. Storch de Gracia, D. Moya Perrino, and B. Llamas, “Multicriteria methodology and hierarchical innovation in the energy sector,” Manag. Decis., vol. 57, no. 5, pp. 1286–1303, May 2019, doi: https://doi.org/10.1108/MD-07-2017-0676.

[55] A. R. Mishra et al., “Novel Multi-Criteria Intuitionistic Fuzzy SWARA–COPRAS Approach for Sustainability Evaluation of the Bioenergy Production Process,” Sustainability, vol. 12, no. 10, p. 4155, May 2020, doi: https://doi.org/10.3390/su12104155.

[56] Z. Xiang, M. H. Naseem, and J. Yang, “Selection of Coal Transportation Company Based on Fuzzy SWARA-COPRAS Approach,” Logistics, vol. 6, no. 1, p. 7, Jan. 2022, doi: https://doi.org/10.3390/logistics6010007.

[57] Z. N. Ansari, R. Kant, and R. Shankar, “Evaluation and ranking of solutions to mitigate sustainable remanufacturing supply chain risks: a hybrid fuzzy SWARA-fuzzy COPRAS framework approach,” Int. J. Sustain. Eng., vol. 13, no. 6, pp. 473–494, Nov. 2020, doi: https://doi.org/10.1080/19397038.2020.1758973.

[58] D. O. Aikhuele, D. E. Ighravwe, and D. Akinyele, “Evaluation of Renewable Energy Technology Based on Reliability Attributes Using Hybrid Fuzzy Dynamic Decision-Making Model,” Technol. Econ. Smart Grids Sustain. Energy, vol. 4, no. 1, p. 16, Dec. 2019, doi: https://doi.org/10.1007/s40866-019-0072-2.

[59] H.-C. Lee and C.-T. Chang, “Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan,” Renew. Sustain. Energy Rev., vol. 92, pp. 883–896, Sep. 2018, doi: https://doi.org/10.1016/j.rser.2018.05.007.

[60] A. G. Abdullah, M. A. Shafii, S. Pramuditya, T. Setiadipura, and K. Anzhar, “Multi-criteria decision making for nuclear power plant selection using fuzzy AHP: Evidence from Indonesia,” Energy AI, vol. 14, p. 100263, Oct. 2023, doi: https://doi.org/10.1016/j.egyai.2023.100263.

[61] F. Alfaruq, Tumiran, and Sarjiya, “Evaluation of Co-firing in a Pulverized Coal Boiler Using Multi-Biomass: Sawdust and Rice Husks,” in 2024 IEEE 2nd International Conference on Electrical Engineering, Computer and Information Technology (ICEECIT), IEEE, Nov. 2024, pp. 431–435. doi: https://doi.org/10.1109/ICEECIT63698.2024.10859495.

[62] Suyatno, A. Sugiyono, J. Dian, S. M. Utomo, H. P. Putra, and Hariana, “Utilization of agricultural waste biomass as co-firing fuel for coal power plants: Slagging and fouling aspects,” in AIP Conference Proceedings, 2024, p. 020100. doi: https://doi.org/10.1063/5.0205734.

[63] A. D. Pasek, M. Soleh, F. B. Juangsa, and P. S. Darmanto, “Progress on Biomass Coal Co-firing for Indonesia Power Plant,” IOP Conf. Ser. Earth Environ. Sci., vol. 1395, no. 1, p. 012009, Sep. 2024, doi: https://doi.org/10.1088/1755-1315/1395/1/012009.

[64] M. A. Rahmanta and N. Cahyo, “Implementing Biomass Co-firing in Indonesia to Achieve Net Zero Emissions: A Comprehensive Review and SWOT Analysis,” in 2024 International Seminar on Intelligent Technology and Its Applications (ISITIA), IEEE, Jul. 2024, pp. 59–64. doi: https://doi.org/10.1109/ISITIA63062.2024.10667728.

[65] A. H. Truong, P. Patrizio, S. Leduc, F. Kraxner, and M. Ha-Duong, “Reducing emissions of the fast growing Vietnamese coal sector: The chances offered by biomass co-firing,” J. Clean. Prod., vol. 215, pp. 1301–1311, Apr. 2019, doi: https://doi.org/10.1016/j.jclepro.2019.01.065.

[66] K. Trivedi et al., “Sustainable utilization of industrial solid and hazardous wastes with coal for energy and environmental efficiency,” Environ. Sci. Pollut. Res., vol. 32, no. 18, pp. 11502–11518, Apr. 2025, doi: https://doi.org/10.1007/s11356-025-36372-w.

[67] A. W. Nugroho, D. T. Rukmi, I. M. Hardi, A. Soleh, and D. Fardiansyah, “Impact of Biomass Co-Firing on CFB Boiler Equipment of a 100 MWe Coal Power Plant,” in 2024 International Conference on Technology and Policy in Energy and Electric Power (ICTPEP), IEEE, Sep. 2024, pp. 346–351. doi: https://doi.org/10.1109/ICT-PEP63827.2024.10733455.

[68] Y. Van Fan, Z. N. Pintarič, and J. J. Klemeš, “Emerging Tools for Energy System Design Increasing Economic and Environmental Sustainability,” Energies, vol. 13, no. 16, p. 4062, Aug. 2020, doi: https://doi.org/10.3390/en13164062.

[69] G. Siciliano, L. Wallbott, F. Urban, A. N. Dang, and M. Lederer, “Low‐carbon energy, sustainable development, and justice: Towards a just energy transition for the society and the environment,” Sustain. Dev., vol. 29, no. 6, pp. 1049–1061, Nov. 2021, doi: https://doi.org/10.1002/sd.2193.

[70] S. Amiri-Pebdani, M. Alinaghian, and S. Safarzadeh, “Time-Of-Use pricing in an energy sustainable supply chain with government interventions: A game theory approach,” Energy, vol. 255, p. 124380, Sep. 2022, doi: https://doi.org/10.1016/j.energy.2022.124380.

[71] D. M. Utama, M. F. Ibrahim, and A. N. A. A. K. Jabari, “A Fuzzy Multi-Criteria Approach for Selecting Open-Source ERP Systems in SMEs Using Fuzzy AHP and TOPSIS,” J. Optimasi Sist. Ind., vol. 23, no. 2, pp. 167–187, Jan. 2025, doi: https://doi.org/10.25077/josi.v23.n2.p167-187.2024.

[72] H. Gheibdoust and M. Homayounfar, “Using fuzzy SWARA for evaluating the influence factors of knowledge management in tourism industry,” Int. J. Knowl. Manag. Stud., vol. 15, no. 4, pp. 472–498, 2024, doi: https://doi.org/10.1504/IJKMS.2024.144153.

[73] T. Sivageerthi, S. Bathrinath, M. Uthayakumar, and R. K. A. Bhalaji, “A SWARA method to analyze the risks in coal supply chain management,” Mater. Today Proc., vol. 50, pp. 935–940, 2022, doi: https://doi.org/10.1016/j.matpr.2021.06.338.

[74] P. Mojaver, S. Khalilarya, A. Chitsaz, and M. Assadi, “Multi-objective optimization of a power generation system based SOFC using Taguchi/AHP/TOPSIS triple method,” Sustain. Energy Technol. Assessments, vol. 38, p. 100674, Apr. 2020, doi: https://doi.org/10.1016/j.seta.2020.100674.

[75] D. M. Utama, “AHP and TOPSIS Integration for Green Supplier Selection: A Case Study in Indonesia,” J. Phys. Conf. Ser., vol. 1845, no. 1, p. 12015, 2021, doi: https://doi.org/10.1088/1742-6596/1845/1/012015.

[76] D. M. Utama, B. Maharani, and I. Amallynda, “Integration Dematel and ANP for The Supplier Selection in The Textile Industry: A Case Study,” J. Ilm. Tek. Ind., vol. 20, no. 1, pp. 119–130, Jul. 2021, doi: https://doi.org/10.23917/jiti.v20i1.13806.

[77] A. Hasheminezhad, F. Hadadi, and H. Shirmohammadi, “Investigation and prioritization of risk factors in the collision of two passenger trains based on fuzzy COPRAS and fuzzy DEMATEL methods,” Soft Comput., vol. 25, no. 6, pp. 4677–4697, Mar. 2021, doi: https://doi.org/10.1007/s00500-020-05478-3.

[78] F. Hadadi and H. Shirmohammadi, “Identification of Road Critical Segments Using Wavelet Theory and Multi-Criteria Decision-Making Method,” Eur. Transp. Eur., vol. 68, no. 1–14, 2018, [Online]. Available: https://www.istiee.unict.it/europeantransport/papers/N68/P02_68_2018.pdf

[79] F. Hadadi and H. Shirmohammadi, “Application of fuzzy logic for evaluation of resilient modulus performance of stone mastic asphalt,” J. Theor. Appl. Inf. Technol., vol. 95, pp. 3020–3031, 2017, [Online]. Available: http://www.jatit.org/volumes/Vol95No13/15Vol95No13.pdf

Downloads

Published

2025-12-28

Issue

Section

Research Article

How to Cite

[1]
D. Utama and B. Diami, “A hybrid fuzzy SWARA-COPRAS framework to evaluate sustainable co-firing in coal power plants: A case study from Indonesia”, j. sist. manaj. ind., vol. 9, no. 2, pp. 109–124, Dec. 2025, doi: 10.30656/jsmi.v9i2.10859.