Early fault detection system for sugar mill machines through various machine learning approach

Authors

DOI:

https://doi.org/10.30656/jsmi.v9i2.10530

Keywords:

Early detection, Fault anomaly, Machine learning, Milling machine, Sugar agroindustry

Abstract

The milling machine is a crucial aspect of the sugarcane agroindustry production system; a disturbed milling machine will cause a decrease in production efficiency, sap quality degradation, and excessive energy consumption. An early fault anomaly detection system through machine learning is a solution to overcome the problems in sugarcane milling machines. The purpose of this research is to propose a system architecture design for early fault anomaly detection in sugarcane agroindustry milling machines and to evaluate the performance of various machine learning models on historical sensor data, identifying the most promising approach. This study proposes a novel anomaly detection framework for sugarcane milling machines to advance smart monitoring in agro-industrial systems. Using an empirical dataset of 7,673 sensor instances (temperature, vibration, pressure, and humidity), and applying several machine learning algorithms (logistic regression, decision tree, and random forest), the framework integrates multi-sensor data to improve fault prediction and reduce downtime. The results showed that the random forest had the best accuracy, at 98.13%, followed by the decision tree, at 97.87%, and logistic regression, at 89.70%. Feature contribution analysis reveals that the vibration signal is the most dominant contributing factor among other features. The results show that machine learning is a potential approach for predicting faults in sugarcane milling machines, which can help the sugarcane agriculture industry make informed decisions in the event of disturbances in these machines.

Downloads

Download data is not yet available.

References

[1] J. Walton, H. Bell, R. Re, and A. P. Nugent, “Current perspectives on global sugar consumption: definitions, recommendations, population intakes, challenges and future direction,” Nutr. Res. Rev., vol. 36, no. 1, pp. 1–22, Jun. 2023, doi: https://doi.org/10.1017/S095442242100024X.

[2] H. Eriklioglu et al., “Classification and quantification of sucrose from sugar beet and sugarcane using optical spectroscopy and chemometrics,” J. Food Sci., vol. 88, no. 8, pp. 3274–3286, Aug. 2023, doi: https://doi.org/10.1111/1750-3841.16674.

[3] K. S. Dinesh Babu, V. Janakiraman, H. Palaniswamy, L. Kasirajan, R. Gomathi, and T. R. Ramkumar, “A short review on sugarcane: its domestication, molecular manipulations and future perspectives,” Genet. Resour. Crop Evol., vol. 69, no. 8, pp. 2623–2643, Dec. 2022, doi: https://doi.org/10.1007/s10722-022-01430-6.

[4] D. Medina Hidalgo, A. Mallette, S. Nadir, and S. Kumar, “The future of the sugarcane industry in Fiji: climatic, non-climatic stressors, and opportunities for transformation,” Front. Sustain. Food Syst., vol. 8, no. March, pp. 1–13, Mar. 2024, doi: https://doi.org/10.3389/fsufs.2024.1358647.

[5] USDA, “Sugar : World Markets and Trade,” 2025, USDA, United States. [Online]. Available: https://apps.fas.usda.gov/psdonline/circulars/sugar.pdf

[6] N. M. Salatein, R. A. Ibrahim, and I. S. Fahim, “Sustainable utilization of sugarcane bagasse for wood-based panels : A promising approach for waste management in Egypt Sustainable utilization of sugarcane bagasse for wood-based panels : A promising approach for waste management in Egypt,” J. Eng. Res., no. May, 2024, doi: https://doi.org/10.1016/j.jer.2024.05.013.

[7] M. Qiu, Y. Meng, J. Chen, Y. Chen, Z. Li, and J. Li, “Dual multi-objective optimisation of the cane milling process,” Comput. Ind. Eng., vol. 179, p. 109146, May 2023, doi: https://doi.org/10.1016/j.cie.2023.109146.

[8] Z. Li et al., “Multi-Objective Optimization of Sugarcane Milling System Operations Based on a Deep Data-Driven Model,” Foods, vol. 11, no. 23, p. 3845, Nov. 2022, doi: https://doi.org/10.3390/foods11233845.

[9] P. Dhansu et al., “Different Treatments for Sugarcane Juice Preservation,” Foods, vol. 12, no. 2, p. 311, Jan. 2023, doi: https://doi.org/10.3390/foods12020311.

[10] N. Ayele, T. Tana, P. D. R. van Heerden, K. W/Tsadik, and Y. Alemayehu, “Sugarcane Yield and Juice Quality as Affected by Harvest Age and Chemical Ripeners in Central Rift Valley of Ethiopia,” Agric. Res., vol. 12, no. 4, pp. 421–427, Dec. 2023, doi: https://doi.org/10.1007/s40003-023-00664-9.

[11] R. J. Nayak and J. P. Chaudhari, “Anomaly detection using deep learning based model with feature attention,” IAES Int. J. Artif. Intell., vol. 13, no. 1, p. 383, Mar. 2024, doi: https://doi.org/10.11591/ijai.v13.i1.pp383-390.

[12] Y. Meng, S. Yu, H. Wang, J. Qin, and Y. Xie, “Data‐driven modeling based on kernel extreme learning machine for sugarcane juice clarification,” Food Sci. Nutr., vol. 7, no. 5, pp. 1606–1614, May 2019, doi: https://doi.org/10.1002/fsn3.985.

[13] Q. Duan, H. Mao, H. Mao, Z. Huang, B. Li, and X. Li, “Study on elastoplastic coupling mechanics model of the milled mixture of sugar cane,” Food Sci. Technol., vol. 39, no. suppl 1, pp. 270–277, Jun. 2019, doi: https://doi.org/10.1590/fst.02518.

[14] C. Nayak and V. K. Pathak, “Design and Development of Machine Fault Simulator (Mfs) for Fault Diagnosis,” Int. J. Recent Adv. Mech. Eng., vol. 4, no. 4, pp. 77–84, Nov. 2015, doi: https://doi.org/10.14810/ijmech.2015.4407.

[15] A. Alsubayhin, M. S. Ramzan, and B. Alzahrani, “Crime Prediction Model using Three Classification Techniques: Random Forest, Logistic Regression, and LightGBM,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 1, pp. 240–251, 2024, doi: https://doi.org/10.14569/IJACSA.2024.0150123.

[16] J. Sandhu, B. Mahapatra, S. Kulkarni, and A. Bhatt, “MetroPT Predictive Maintenance Using Logistic Regression and Random Forest with Isolation Forest Preprocessing,” in Lecture Notes in Networks and Systems, P. M., D. K., and N. A., Eds., School of Data Science, Symbiosis Skills and Professional University, Kiwale, Maharashtra, Pune, 412101, India: Springer Science and Business Media Deutschland GmbH, 2024, pp. 503–513. doi: https://doi.org/10.1007/978-981-97-3180-0_33.

[17] M. H. Moharam, O. Hany, A. Hany, A. Mahmoud, M. Mohamed, and S. Saeed, “Anomaly detection using machine learning and adopted digital twin concepts in radio environments,” Sci. Rep., vol. 15, no. 1, p. 18352, May 2025, doi: https://doi.org/10.1038/s41598-025-02759-5.

[18] S. Kim, H. Seo, and E. C. Lee, “Advanced Anomaly Detection in Manufacturing Processes: Leveraging Feature Value Analysis for Normalizing Anomalous Data,” Electronics, vol. 13, no. 7, p. 1384, Apr. 2024, doi: https://doi.org/10.3390/electronics13071384.

[19] C. El Morr, M. Jammal, H. Ali-Hassan, and W. El-Hall

ak, “Decision Trees,” in International Series in Operations Research and Management Science, vol. 334, School of Health Policy and Management, York University, Toronto, ON, Canada: Springer, 2022, pp. 251–278. doi: https://doi.org/10.1007/978-3-031-16990-8_8.

[20] M. K. Gangwar, N. K. Sahu, R. K. Shukla, and C. Nayak, “Machine learning based progressive crack fault monitoring on spur gear using vibration analysis,” Int. J. Veh. Noise Vib., vol. 20, no. 1, pp. 89–106, Jan. 2024, doi: https://doi.org/10.1504/IJVNV.2024.138126.

[21] R. R. Saddala, D. Radha, and V. S. K. Devi, “Predictive Maintenance Analysis Using Multivariate Machine Performance Data for Industrial Downtime Reduction,” in 2025 3rd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), Department of Computer Science and Engineering, Amrita school of computing, Amrita Vishwa Vidyapeetham, Bengaluru, India: IEEE, Feb. 2025, pp. 2283–2288. doi: https://doi.org/10.1109/IDCIOT64235.2025.10915129.

[22] S. Padmavathi, B. Nevetha, R. B. Sakthi, and K. M. A. Varshini, “Machine Learning for Reliable Industrial Operations,” in Cybersecurity and Data Science Innovations for Sustainable Development of HEICC, Boca Raton, Thiagarajar College of Engineering, Tamilnadu, Madurai, India: CRC Press, 2024, pp. 316–330. doi: https://doi.org/10.1201/9781032711300-22.

[23] M. Gao, Y. Wei, Z. Li, B. Huang, C. Zheng, and A. Mulati, “A Survey of Machine Learning Algorithms for Defective Steel Plates Classification,” in Lecture Notes in Electrical Engineering, vol. 1252 LNEE, S. S. Y., Ed., College of Engineering and Computing, Florida International University, Miami, United States: Springer Science and Business Media Deutschland GmbH, 2024, pp. 467–476. doi: https://doi.org/10.1007/978-981-97-6934-6_55.

[24] M. Kopp, T. Pevný, and M. Holeňa, “Anomaly explanation with random forests,” Expert Syst. Appl., vol. 149, p. 113187, Jul. 2020, doi: https://doi.org/10.1016/j.eswa.2020.113187.

[25] Y. Cao and Y. Liang, “A Logistic Regression-based Early Warning System for Financial Risks under the Digital Transformation of Manufacturing Enterprises,” in 2022 6th Annual International Conference on Data Science and Business Analytics (ICDSBA), IEEE, Oct. 2022, pp. 278–285. doi: https://doi.org/10.1109/ICDSBA57203.2022.00032.

[26] J. A. Martínez Pérez and P. S. Pérez Martín, “Regresión logística,” Med. Fam. Semer., vol. 50, no. 1, p. 102086, 2024, doi: https://doi.org/10.1016/j.semerg.2023.102086.

[27] M. Batra and R. Agrawal, “Comparative Analysis of Decision Tree Algorithms,” B. K. Panigrahi, M. N. Hoda, V. Sharma, and S. Goel, Eds., Singapore: Springer Singapore, 2018, pp. 31–36. doi: https://doi.org/10.1007/978-981-10-6747-1_4.

[28] R. Buaton et al., “Decision Tree Optimization in Data Mining with Support and Confidence,” J. Phys. Conf. Ser., vol. 1255, no. 1, p. 012056, Aug. 2019, doi: 10.1088/1742-6596/1255/1/012056.

[29] Y. Manzali and M. Elfar, “Random Forest Pruning Techniques: A Recent Review,” Oper. Res. Forum, vol. 4, no. 2, p. 43, May 2023, doi: https://doi.org/10.1007/s43069-023-00223-6.

[30] A. B. Shaik and S. Srinivasan, “A Brief Survey on Random Forest Ensembles in Classification Model,” S. Bhattacharyya, A. E. Hassanien, D. Gupta, A. Khanna, and I. Pan, Eds., Singapore: Springer Singapore, 2019, pp. 253–260. doi: https://doi.org/10.1007/978-981-13-2354-6_27.

[31] K. Shukla, S. Nefti-Meziani, and S. Davis, “A heuristic approach on predictive maintenance techniques: Limitations and scope,” Adv. Mech. Eng., vol. 14, no. 6, pp. 1–14, Jun. 2022, doi: https://doi.org/10.1177/16878132221101009.

[32] A. Kumar, P. Sathujoda, and N. A. Bhalla, “Vibration signal analysis of a rotor-bearing system through wavelet transform and empirical mode decomposition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1248, no. 1, p. 012027, Jul. 2022, doi: https://doi.org/10.1088/1757-899X/1248/1/012027.

[33] A. M. Umbrajkaar, A. Krishnamoorthy, and R. B. Dhumale, “Vibration Analysis of Shaft Misalignment Using Machine Learning Approach under Variable Load Conditions,” Shock Vib., vol. 2020, pp. 1–12, Jul. 2020, doi: https://doi.org/10.1155/2020/1650270.

[34] A. Jaramillo-Alcazar, J. Govea, and W. Villegas-Ch, “Anomaly Detection in a Smart Industrial Machinery Plant Using IoT and Machine Learning,” Sensors, vol. 23, no. 19, p. 8286, Oct. 2023, doi: https://doi.org/10.3390/s23198286.

[35] M. Gamal, A. Donkol, A. Shaban, F. Costantino, G. Di Gravio, and R. Patriarca, “Anomalies Detection in Smart Manufacturing Using Machine Learning and Deep Learning Algorithms,” Proc. Int. Conf. Ind. Eng. Oper. Manag., pp. 1611–1622, 2021, [Online]. Available: https://ieomsociety.org/proceedings/2021rome/573.pdf

[36] M. Huang, Z. Liu, and Y. Tao, “Mechanical fault diagnosis and prediction in IoT based on multi-source sensing data fusion,” Simul. Model. Pract. Theory, vol. 102, no. September 2019, p. 101981, Jul. 2020, doi: https://doi.org/10.1016/j.simpat.2019.101981.

[37] D. Bagci Das and O. Das, “GABoT: A Lightweight Real-Time Adaptable Approach for Intelligent Fault Diagnosis of Rotating Machinery,” J. Vib. Eng. Technol., vol. 12, no. S1, pp. 679–697, Dec. 2024, doi: https://doi.org/10.1007/s42417-024-01440-x.

[38] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He, “Fault Diagnosis of a Rolling Bearing Using Wavelet Packet Denoising and Random Forests,” IEEE Sens. J., vol. 17, no. 17, pp. 5581–5588, Sep. 2017, doi: https://doi.org/10.1109/JSEN.2017.2726011.

[39] C. Li, R.-V. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez, “Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals,” Mech. Syst. Signal Process., vol. 76–77, pp. 283–293, Aug. 2016, doi: https://doi.org/10.1016/j.ymssp.2016.02.007.

[40] J. K. Chow, Z. Su, J. Wu, P. S. Tan, X. Mao, and Y. H. Wang, “Anomaly detection of defects on concrete structures with the convolutional autoencoder,” Adv. Eng. Informatics, vol. 45, no. February, p. 101105, Aug. 2020, doi: https://doi.org/10.1016/j.aei.2020.101105.

[41] L. Scime and J. Beuth, “A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process,” Addit. Manuf., vol. 24, pp. 273–286, Dec. 2018, doi: https://doi.org/10.1016/j.addma.2018.09.034.

[42] C. Cooper, J. Zhang, R. X. Gao, P. Wang, and I. Ragai, “Anomaly detection in milling tools using acoustic signals and generative adversarial networks,” Procedia Manuf., vol. 48, no. 2019, pp. 372–378, 2020, doi: https://doi.org/10.1016/j.promfg.2020.05.059.

[43] G. Mattera and L. Nele, “Machine learning approaches for real-time process anomaly detection in wire arc additive manufacturing,” Int. J. Adv. Manuf. Technol., vol. 137, no. 5–6, pp. 2863–2888, Mar. 2025, doi: https://doi.org/10.1007/s00170-025-15327-y.

[44] E. G. Sperandio Nascimento, J. S. Liang, I. S. Figueiredo, and L. L. N. Guarieiro, “T4pdm: A Deep Neural Network Based on the Transformer Architecture for Fault Diagnosis of Rotating Machinery,” SSRN Electron. J., 2022, doi: https://doi.org/10.2139/ssrn.4267690.

[45] Q. Meng and S. Zhu, “Anomaly detection for construction vibration signals using unsupervised deep learning and cloud computing,” Adv. Eng. Informatics, vol. 55, p. 101907, Jan. 2023, doi: https://doi.org/10.1016/j.aei.2023.101907.

[46] A. Althubaiti, F. Elasha, and J. A. Teixeira, “Fault diagnosis and health management of bearings in rotating equipment based on vibration analysis – a review,” J. Vibroengineering, vol. 24, no. 1, pp. 46–74, Feb. 2022, doi: https://doi.org/10.21595/jve.2021.22100.

[47] M. Tiboni, C. Remino, R. Bussola, and C. Amici, “A Review on Vibration-Based Condition Monitoring of Rotating Machinery,” Appl. Sci., vol. 12, no. 3, p. 972, Jan. 2022, doi: https://doi.org/10.3390/app12030972.

[48] M. Romanssini, P. C. C. de Aguirre, L. Compassi-Severo, and A. G. Girardi, “A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery,” Eng, vol. 4, no. 3, pp. 1797–1817, Jun. 2023, doi: https://doi.org/10.3390/eng4030102.

[49] Y. Cheng, M. Lin, J. Wu, H. Zhu, and X. Shao, “Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform-local binary convolutional neural network,” Knowledge-Based Syst., vol. 216, p. 106796, Mar. 2021, doi: https://doi.org/10.1016/j.knosys.2021.106796.

[50] A. Rafati and H. R. Shaker, “Predictive maintenance of district heating networks: A comprehensive review of methods and challenges,” Therm. Sci. Eng. Prog., vol. 53, no. July, p. 102722, Aug. 2024, doi: https://doi.org/10.1016/j.tsep.2024.102722.

[51] B. M. Erland, A. K. Thorpe, and J. A. Gamon, “Recent Advances Toward Transparent Methane Emissions Monitoring: A Review,” Environ. Sci. Technol., vol. 56, no. 23, pp. 16567–16581, Dec. 2022, doi: https://doi.org/10.1021/acs.est.2c02136.

[52] J. Johny, S. Amos, and R. Prabhu, “Optical Fibre-Based Sensors for Oil and Gas Applications,” Sensors, vol. 21, no. 18, p. 6047, Sep. 2021, doi: https://doi.org/10.3390/s21186047.

[53] M. Wang, X. Zhu, G. Zhou, K. Li, Q. Wu, and W. Fan, “Anomaly detection in multidimensional time series for water injection pump operations based on LSTMA-AE and mechanism constraints,” Sci. Rep., vol. 15, no. 1, p. 2020, Jan. 2025, doi: https://doi.org/10.1038/s41598-025-85436-x.

[54] B. Zhou et al., “Smart table surface: A novel approach to pervasive dining monitoring,” in 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, Mar. 2015, pp. 155–162. doi: https://doi.org/10.1109/PERCOM.2015.7146522.

[55] H. Kim and I. Joe, “Enhancing Anomaly Detection in Maritime Operational IoT Time Series Data with Synthetic Outliers,” Electronics, vol. 13, no. 19, p. 3912, Oct. 2024, doi: https://doi.org/10.3390/electronics13193912.

[56] Z. Hu, W. Chen, H. Wang, P. Tian, and D. Shen, “Integrated data-driven framework for anomaly detection and early warning in water distribution system,” J. Clean. Prod., vol. 373, p. 133977, Nov. 2022, doi: https://doi.org/10.1016/j.jclepro.2022.133977.

[57] J. Rabatel, S. Bringay, and P. Poncelet, “Anomaly detection in monitoring sensor data for preventive maintenance,” Expert Syst. Appl., vol. 38, no. 6, pp. 7003–7015, Jun. 2011, doi: https://doi.org/10.1016/j.eswa.2010.12.014.

[58] H. Farahani, R. Wagiran, and M. Hamidon, “Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review,” Sensors, vol. 14, no. 5, pp. 7881–7939, Apr. 2014, doi: https://doi.org/10.3390/s140507881.

[59] M. Pech, J. Vrchota, and J. Bednář, “Predictive Maintenance and Intelligent Sensors in Smart Factory: Review,” Sensors, vol. 21, no. 4, p. 1470, Feb. 2021, doi: https://doi.org/10.3390/s21041470.

[60] T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geosci. Model Dev., vol. 15, no. 14, pp. 5481–5487, Jul. 2022, doi: https://doi.org/10.5194/gmd-15-5481-2022.

[61] C. F. Dormann et al., “Collinearity: a review of methods to deal with it and a simulation study evaluating their performance,” Ecography (Cop.)., vol. 36, no. 1, pp. 27–46, Jan. 2013, doi: https://doi.org/10.1111/j.1600-0587.2012.07348.x.

[62] P. Turner, “Critical values for the Durbin-Watson test in large samples,” Appl. Econ. Lett., vol. 27, no. 18, pp. 1495–1499, Oct. 2020, doi: https://doi.org/10.1080/13504851.2019.1691711.

[63] L. Barreñada, P. Dhiman, D. Timmerman, A.-L. Boulesteix, and B. Van Calster, “Understanding random forests and overfitting: a visualization and simulation study,” Diagnostic Progn. Res., pp. 1–14, 2024, doi: https://doi.org/10.1186/s41512-024-00177-1.

[64] E. Halabaku and E. Bytyçi, “Overfitting in Machine Learning: A Comparative Analysis of Decision Trees and Random Forests,” Intell. Autom. Soft Comput., vol. 39, no. 6, pp. 987–1006, 2024, doi: https://doi.org/10.32604/iasc.2024.059429.

[65] A. Borucka and M. Grzelak, “Application of logistic regression for production machinery effciency evaluation,” Appl. Sci., vol. 9, no. 22, 2019, doi: https://doi.org/10.3390/app9224770.

[66] Q. Hu, X. S. Si, Q. H. Zhang, and A. S. Qin, “A rotating machinery fault diagnosis method based on multi-scale dimensionless indicators and random forests,” Mech. Syst. Signal Process., vol. 139, p. 106609, 2020, doi: https://doi.org/10.1016/j.ymssp.2019.106609.

[67] M. Jiang, T. Cheng, K. Dong, S. Xu, and Y. Geng, “Fault diagnosis method of submersible screw pump based on random forest,” PLoS One, vol. 15, no. 11, p. e0242458, Nov. 2020, doi: https://doi.org/10.1371/journal.pone.0242458.

[68] J. Ding, Q. Luo, L. Jia, and J. You, “Deep Forest-Based Fault Diagnosis Method for Chemical Process,” Math. Probl. Eng., vol. 2020, pp. 1–15, Jan. 2020, doi: https://doi.org/10.1155/2020/5281512.

[69] W. Wen, J. Qin, X. Xu, K. Mi, and M. Zhou, “A Model-Driven Approach to Extract Multi-Source Fault Features of a Screw Pump,” Processes, vol. 12, no. 11, p. 2571, Nov. 2024, doi: https://doi.org/10.3390/pr12112571.

[70] R. B. Randall, Vibration-based condition monitoring: industrial, aerospace, and automotive applications. United States: Wiley, 2011. doi: https://doi.org/10.1002/9780470977668.

[71] N. Tambake, B. Deshmukh, S. Pardeshi, S. Salunkhe, R. Cep, and E. A. Nasr, “Fault diagnosis of a CNC hobbing cutter through machine learning using three axis vibration data,” Heliyon, vol. 11, no. 2, p. e41637, Jan. 2025, doi: https://doi.org/10.1016/j.heliyon.2025.e41637.

[72] Z. Yuan, T. Zhou, J. Liu, C. Zhang, and Y. Liu, “Fault Diagnosis Approach for Rotating Machinery Based on Feature Importance Ranking and Selection,” Shock Vib., vol. 2021, no. 1, Jan. 2021, doi: https://doi.org/10.1155/2021/8899188.

[73] O. Das, D. Bagci Das, and D. Birant, “Machine learning for fault analysis in rotating machinery: A comprehensive review,” Heliyon, vol. 9, no. 6, p. e17584, Jun. 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e17584.

[74] Y. Wei, Y. Li, M. Xu, and W. Huang, “A Review of Early Fault Diagnosis Approaches and Their Applications in Rotating Machinery,” Entropy, vol. 21, no. 4, p. 409, Apr. 2019, doi: https://doi.org/10.3390/e21040409.

[75] G. Lin, M. Pritoni, Y. Chen, and J. Granderson, “Development and Implementation of Fault-Correction Algorithms in Fault Detection and Diagnostics Tools,” Energies, vol. 13, no. 10, p. 2598, May 2020, doi: https://doi.org/10.3390/en13102598.

[76] M. Achouch et al., “On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges,” 2022. doi: https://doi.org/10.3390/app12168081.

[77] S. Zheng and Y. Zhou, “Digital Transformation and Competitive Advantage in Manufacturing: The Role of Business Model Innovation,” 2025. doi: https://doi.org/10.3390/economies13070209.

Downloads

Published

2025-12-28

Issue

Section

Research Article

How to Cite

[1]
T. T. Baladraf, T. Djatna, A. F. Hidayat, A. Fatikhudin, H. M. A. . Retha, and Z. D. . Anwar, “Early fault detection system for sugar mill machines through various machine learning approach”, j. sist. manaj. ind., vol. 9, no. 2, pp. 125–139, Dec. 2025, doi: 10.30656/jsmi.v9i2.10530.