Peramalan Curah Hujan Kabupaten Padang Pariaman dengan Menggunakan Metode Fuzzy Time Series Singh
DOI:
https://doi.org/10.30656/gauss.v8i1.10465Abstract
Abstrak
Penelitian ini bertujuan untuk meramalkan curah hujan di Kabupaten Padang Pariaman, Provinsi Sumatera Barat, menggunakan metode Fuzzy Time Series Singh. Penelitian ini dilatarbelakangi oleh fluktuasi curah hujan yang tinggi di wilayah tersebut, yang menyebabkan bencana seperti banjir dan tanah longsor, yang merugikan sektor pertanian, infrastruktur, kesehatan, dan perekonomian masyarakat. Data yang digunakan adalah data curah hujan bulanan dari Januari 2020 hingga Desember 2024. Metode Fuzzy Time Series Singh dipilih karena sederhana namun efektif dalam meramalkan data runtun waktu berbasis logika fuzzy. Tahapan dalam metode ini meliputi pembentukan himpunan semesta, penentuan interval, fuzzifikasi data, pembentukan hubungan logika fuzzy, dan defuzzifikasi. Berdasarkan hasil penelitian diperoleh bahwa metode ini mampu menghasilkan estimasi curah hujan yang mendekati nilai aktual, dengan MAPE 7,67%. Hasil penelitian dapat digunakan sebagai alat bantu dalam perencanaan mitigasi bencana seperti tanah longsor dan banjir.
Kata kunci: Curah Hujan, Peramalan, Fuzzy Time Series SinghAbstract
This study aims to forecast rainfall in Padang Pariaman Regency, West Sumatra Province, using the Fuzzy Time Series Singh method. The research is motivated by the high fluctuation of rainfall in the area, which often leads to disasters such as floods and landslides, adversely affecting the agricultural sector, infrastructure, public health, and the local economy. The data used in this study consists of monthly rainfall records from January 2020 to December 2024. The Fuzzy Time Series Singh method was chosen due to its simplicity and effectiveness in forecasting time series data based on fuzzy logic. The stages of this method include the formation of the universe of discourse, interval determination, data fuzzification, formation of fuzzy logical relationships, and defuzzification. The results of the study show that this method is capable of producing rainfall estimates that closely match the actual values, with a MAPE of 7.67%. The findings can be used as a supporting tool for disaster mitigation planning, particularly for landslides and floods.
Keywords: Rainfall, Forecasting, Fuzzy Time Series Singh
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Riskiani Lubis, Zamahsary Martha, Syafriandi, Admi Salma

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish articles in GAUSS : JURNAL PENDIDIKAN MATEMATIKA agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).