IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOR UNTUK OPTIMASI PEMBERIAN REWARD SISWA SMA

Authors

  • Agus Riyanto Universitas Duta Bangsa
  • Nurchim Universitas Duta Bangsa
  • Intan Oktaviani Universitas Duta Bangsa

DOI:

https://doi.org/10.30656/jsii.v12i2.11017

Abstract

Providing rewards to students is a common strategy to enhance learning motivation and participation in school. However, conventional reward systems often face challenges related to objectivity and the comprehensiveness of assessment criteria. This study aims to apply the K-Nearest Neighbor (KNN) algorithm as an optimization tool for determining reward recipients among high school students. The dataset includes average report card scores, moral values, parental income, number of siblings, and non-academic activity scores. The KNN method was selected for its effectiveness in classifying data based on similarity. The research process involved collecting historical student data, normalizing the data, building the KNN model, and evaluating its performance. The results show that the KNN model achieved an accuracy rate of 91% in classifying students into appropriate reward categories. This indicates that the model can reliably support decision-making in the reward distribution process. In conclusion, applying the KNN algorithm offers a more structured, objective, and transparent approach to student reward allocation, which can enhance the effectiveness of reward programs and promote student development.

 

Keywords: K-Nearest Neighbor, Reward, Classification, Objectivity, Optimization

References

[1] S. P. Abduloh, M. P. Suntoko, S. P. Tedi Purbangkara, M. P. Ade Abikusna, and others, Peningkatan dan Pengembangan Prestasi Belajar Peserta Didik. Ponorogo: Uwais Inspirasi Indonesia, 2022.

[2] D. Olivia, “Penerapan Algoritma K-Nearest Neighbor (KNN) Untuk Ketepatan Waktu Lulus Mahasiswa,” Makassar, 2024. (Skripsi, Universitas Muhammadiyah Makassar, 2024). Tanggal akses 18 April 2025, Diakses dari https://digilibadmin.unismuh.ac.id/upload/39413-Full_Text.pdf

[3] M. Ma’ruf, “Penerapan Algoritma K-Nearest Neighbor Untuk Menentukan Kelulusan Mata Pelajaran Di Sma N 1 Semarang”. (Skripsi, Universitas Semarang, 2024). Tanggal Akses 18 April 2025, Diakses dari https://eskripsi.usm.ac.id/files/skripsi/G11A/2020/G.131.20.0002

[4] F. M. D. Maharani, A. L. Hananto, S. S. Hilabi, F. N. Apriani, A. Hananto, and B. Huda, “Perbandingan Metode Klasifikasi Sentimen Analisis Penggunaan E-Wallet Menggunakan Algoritma Na"ive Bayes dan K-Nearest Neighbor,” Metik Jurnal, vol. 6, no. 2, pp. 97–103, 2022.

[5] S. D. Prasetyo, S. S. Hilabi, and F. Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Na"ive Bayes dan KNN,” Jurnal KomtekInfo, pp. 1–7, 2023.

[6] H. Andriana, “Penerapan Metode K-Nearest Neighbor pada Sentimen Analisis Pengguna Twitter Terhadap KTT G20 di Indonesia,” JIKO (Jurnal Inform. dan Komputer), 2023.

[7] A. Tawakuli, B. Havers, V. Gulisano, D. Kaiser, and T. Engel, “Survey: Time-series data preprocessing: A survey and an empirical analysis,” Journal of Engineering Research, 2024.

[8] S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “Implementasi algoritma klasifikasi k-nearest neighbor (knn) untuk klasifikasi seleksi penerima beasiswa,” IJCIT (Indonesian Journal on Computer and Information Technology), vol. 6, no. 2, pp. 118–127, 2021.

[9] W. Wang et al., “Euclidean distance-based Raman spectroscopy (EDRS) for the prognosis analysis of gastric cancer: A solution to tumor heterogeneity,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 288, p. 122163, 2023.

[10] M. A. Aprihartha, J. Prasetya, and S. I. Fallo, “Implementasi CART-Real Adaboost dalam Memprediksi Minat Pelanggan Membeli Sepatu,” Jurnal EurekaMatika, vol. 12, no. 1, pp. 35–46, 2024.

[11] M. A. Aprihartha, T. N. Alam, and M. Husniyadi, “Perbandingan Metrik Euclidean dan Metrik Manhattan untuk K-Nearest Neighbors dalam Klasifikasi Kismis,” Jurnal Ilmu Komputer dan Informatika, vol. 4, no. 1, pp. 21–30, 2024.

Downloads

Published

2025-09-07

Issue

Section

Articles