UTILIZATION OF K-NEAREST NEIGHBOR ALGORITHM TO ANALYZE AND CLASSIFY HEART DISORDERS BASED ON ELECTROCARDIOGRAM RECORDING DATA

Authors

  • Sumiati Universitas Serang Raya
  • Hanif Nurmajid Universitas Serang Raya
  • Muhammad Ibrohim Universitas Serang Raya
  • Hendry Gunawan Universitas Serang Raya

DOI:

https://doi.org/10.30656/mrecx470

Abstract

This study develops a system to classify heart conditions based on electrocardiogram (ECG) medical records using the K-Nearest Neighbor (KNN) method. This system aims to assist medical personnel, especially doctors, in analyzing ECG results more efficiently, considering the limited number of doctors and practice schedules, with the KNN method, the system can classify heart conditions based on the proximity of the patient's ECG data to other ECG data whose conditions are already known. The results of this study have an accuracy of 80%, a value of 0.88 on the Success Rate and 0.54 on Kappa. This study provides a significant contribution in the use of technology to improve the efficiency of heart examinations. This KNN-based system can be used as a tool in the diagnostic process, considering the limited medical resources. In the future, the development of this system can be done by increasing the amount of data, more complete features, or trying other more complex classification methods to improve accuracy and Kappa.

 

Keyword: Heart Disorders, Classification, K-Nearest Neighbor, Success Rate and Kappa Statistic

References

[1] Anggara, Mario. (2016). Pemilihan Distance Measure Pada K-Means Clustering Untuk Pengelompokkan Member Di Alvaro Fitness. Jurnal Sistem dan Teknologi Informasi (JUSTIN), Vol.1 (No.1), 1-6.

[2] Anthony, J.V dan Joannem, M.G. (2005). Understanding Interobserver Agreement: The Kappa Statistic. Family Medicine, Vol.37 (No.5),360-363.

[3] Dineshgar, Gunsai Pooja dan Singh, Lolita. (2016). A Reveiw On Data Mining For Heart Disease Prediction. International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE), Vol.5 (No.2) 462-466.

[4] Dr. Eng, R. H., dan Sianipar, ST, M.Eng.(2018). Pemograman Database Menggunakan MySql. Yogyakarta : ANDI OFFSET.

[5] Iswanto, ST,.(2007). Membangun Aplikasi Berbasis PHP 5 Dan Firebird 1.5. Yogyakarta : ANDI OFFSET

[6] Kementrian Kesehatan RI. (2011), Pedoman Pengendalian Faktor Resiko Peyakit Jantung Dan Pembuluh Darah, Surat Keputusan Menteri Kesehatan Republik Indonesia Nomor 854/Menkes/SK/IX/2009. Diakses pada 4 April 2020 pukul 20:00 WIB. www.kemenkes.go.id

[7] Mariana, N., dkk.(2015). Penerapan Algoritma K-NN (Nearest Neighbor) Untuk Deteksi Penyakit (Kanker Serviks). Dinamika Informatika. Vol.7 (No 1), 26-34.

[8] Maulana, dkk. (2018). Rancang Bangun Instrumentasi Elektrokardiograf (EKG) dan Klasifikasi Kenormalan Jantung Pada Pola Sinyal EKG Menggunakan Learning Vector Quantization (LVQ). Publiser : JITCE (Journal of Information Technology and Computer Engineering), Vol.2 ( No.1) , 20-26.

[9] Musa, O., dan Alang. (2017). Analisis Penyakit Paru-Paru Menggunakan Algoritma K-Nearest Neighbors Pada Rumah Sakit Aloei Saboe Kota Gorontalo. ILKOM Jurnal Ilmiah, Vol.9 (No 3), 348-352.

[10] Napitupulu, Darmawan (2014), Studi Validitas Dan Realibilitas Faktor Sukses Implementasi EGoverentment Berdasarkan Pendekatan Kappa. Jurnal Sistem Informasi (Journal of Information Systems), Vol.2 (No.10), 70—74.

[11] Prasetyo, Eko. (2012). DATA MINING Konsep Dan Aplikasi Menggunakan MATLAB. Yogyakarta: ANDI.

[12] Rohman, A.,(2016). Komporasi Metode Klasifikasi Data Mining Untuk Prediksi Penyakit

[13] Safriandono, A. N., (2017). Algoritma K-Nearest Neighbors Berbasis Forward Selection Untuk Mendiagnosis Penyakit Jantung Koroner. Komputaki. Vol.3 (No 1). 1-16.

[14] Sinaga, I. R. P. dkk. (2017). Analisa Kelainan Jantung Menggunakan Sinyal Elektrokardiogram Metode Transformasi Wavelet Dan K-Nearest Neighbors. e-Proceeding of Engineering. Vol 4 (No 3). 3518-3523.

Downloads

Published

2024-09-15

Issue

Section

Articles