CLUSTERING OF INDONESIAN PROVINCES BASED ON LIFE EXPECTANCY USING K-MEANS WITH ELBOW METHOD EVALUATION

Authors

  • Asep Lukman Arip Hidayat Universitas Budi Luhur
  • Helmi Zulqan Universitas Budi Luhur
  • Gandung Triyono Universitas Budi Luhur

DOI:

https://doi.org/10.30656/jsii.v12i1.10116

Abstract

Life Expectancy (LE) is an important indicator for measuring the welfare of the community and the level of health in a region. Indonesia's LE varies significantly across provinces, indicating differences in infrastructure and access to health services. The objective of this study is to use the K-Means algorithm to cluster Indonesian provinces based on LE and to evaluate the clustering results using the Elbow method to determine the ideal number of clusters. The data used includes LE from all Indonesian provinces over the past several years. To facilitate the identification of areas requiring special attention in health policy planning, provinces are classified into clusters based on comparable LE characteristics. This study focuses on optimizing the K-Means Algorithm with the Elbow method. Iterative experiments were conducted ten times, and the ideal K value was found to be K=3. The clustering results show that Cluster 0 has 103 members, Cluster 1 has 181 members, and Cluster 2 has 260 members. The research findings indicate that the K-Means algorithm successfully grouped provinces based on LE with a low variation rate within each cluster. The Elbow method helped determine the ideal number of clusters.

References

[1] W. Kurniawan dan U. Indahyanti, “Prediksi Angka Harapan Hidup Penduduk Menggunakan Metode XGBoost,” Indonesian Journal of Applied Technology, vol. 1, no. 2, hlm. 18, Jul 2024, doi: 10.47134/ijat.v1i2.3045.

[2] Y. Pratiwi dan Mulyawan, “Implementasi Algoritma K-Means untuk Menentukan Angka Harapan Hidup berdasarkan Tingkat Provinsi,” Blend Sains Jurnal Teknik, vol. 1, no. 4, hlm. 284–294, Mar 2023, doi: 10.56211/blendsains.v1i4.233.

[3] P. Natalia Napitupulu, A. Rahim Damanik, J. Evonella Napitupulu, T. Informatika, S. A. Tunas Bangsa Jln Sudirman Blok No, dan S. Utara, “Implementasi Algoritma Backpropagation Jaringan Syaraf Tiruan untuk Prediksi Angka Harapan Hidup di Kota Jambi,” Online, 2023.

[4] S. Maria, S. Silalahi, dan L. Pujiastuti, “Penerapan Algoritma Conjugate Gradient Polak Ribiere Dalam Memprediksi Angka Harapan Hidup Di Jawa Timur,” Online, 2023.

[5] M. A. Sembiring, R. T. A. Agus, dan M. F. L. Sibuea, “Penerapan Metode Algoritma K-Means Clustering untuk Pemetaan Penyebaran Penyakit Demam Berdarah Dengue (DBD),” 2021. [Daring]. Tersedia pada: http://jurnal.goretanpena.com/index.php/JSSR

[6] L. L. J. Anarki, Solikhun, dan F. Ilmi, “Optimisasi Prediksi Angka Harapan Hidup: Memanfaatkan Keunggulan Algoritma Conjugate Gradient Polak-Ribiere Di Sumatera Utara,” Online, 2024.

[7] Utkarsh, “Knowledge Discovery in Databases.” Diakses: 4 Januari 2025. [Daring]. Tersedia pada: https://www.scaler.com/topics/data-mining-tutorial/kdd-in-data-mining/

[8] M. D. Chandra, E. Irawan, I. S. Saragih, A. P. Windarto, dan D. Suhendro, “Penerapan Algoritma K-Means dalam Mengelompokkan Balita yang Mengalami Gizi Buruk Menurut Provinsi,” BIOS : Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, hlm. 30–38, Mar 2021, doi: 10.37148/bios.v2i1.19.

[9] G. Feng, M. Fan, dan Y. Chen, “Analysis and Prediction of Students’ Academic Performance Based on Educational Data Mining,” IEEE Access, vol. 10, hlm. 19558–19571, 2022, doi: 10.1109/ACCESS.2022.3151652.

[10] C. Li, “Preprocessing Methods and Pipelines of Data Mining: An Overview,” Jun 2019, [Daring]. Tersedia pada: http://arxiv.org/abs/1906.08510

[11] F. Alghifari dan D. Juardi, “Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes,” 2021.

[12] D. N. Yoliadi, “Data mining Dalam Analisis Tingkat Penjualan Barang Elektronik Menggunakan Algoritma K-Means,” 2023.

Downloads

Published

2025-03-21

Issue

Section

Articles