Corporate Financial Risk Trend Prediction Using ARIMA-Based Machine Learning: A Semantic Literature Review
Keywords:
Machine Learning, ARIMA, Financial Risk Prediction, Financial Model, Artificial Intelligence, Time SeriesAbstract
This research discusses the role of artificial intelligence (AI) technology in improving company financial risk predictions through the application of the Autoregressive Integrated Moving Average (ARIMA) model supported by machine learning. Using systematic literature analysis, this research explores how ARIMA, with the help of AI, can be applied in financial risk management to identify short-term and long-term trends, detect financial anomalies, and improve the quality of decision making. ARIMA models based on machine learning enable faster and more accurate identification of abnormal financial patterns, which is very important in helping companies respond to risks that have the potential to disrupt financial stability. Key findings show that the combination of ARIMA and AI not only makes it easier to analyze large and complex financial data, but also expands the potential of data-driven financial risk management by providing deeper insights. By integrating machine learning, ARIMA becomes more effective in handling dynamic and fluctuating financial data, so companies can anticipate risks more proactively. This study underscores the enormous potential of AI and ARIMA in helping companies build adaptive, high-precision risk prediction systems, offering new opportunities to strengthen financial resilience in an ever-changing business environment.
Downloads
References
Adib, A., Zaerpour, A., & Lotfirad, M. (2021). On the reliability of a novel MODWT-based hybrid ARIMA-artificial intelligence approach to forecast daily Snow Depth (Case study: The western part of the Rocky Mountains in the U.S.A). Cold Regions Science and Technology, 189, 103342. https://doi.org/https://doi.org/10.1016/j.coldregions.2021.103342
Akisik, O., Gal, G., & Mangaliso, M. P. (2020). IFRS, FDI, economic growth and human development: The experience of Anglophone and Francophone African countries. Emerging Markets Review, 45(August), 100725. https://doi.org/10.1016/j.ememar.2020.100725
Al-khateeb, S. (2023). Predicting the Water Situation in Jordan Using Auto Regressive Integrated Moving Average ( ARIMA ) Model Predicting the Water Situation in Jordan Using Auto Regressive Integrated Moving Average ( ARIMA ) Model. Jerash Fo Research and Studies Journal, 24(2), 1–18.
Ariyo, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Stock Price Prediction Using the ARIMA Model. 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 106–112. https://doi.org/10.1109/UKSim.2014.67
Asmara Jaya Sekolah Tinggi Ilmu Ekonomi Sailendra Jakarta, K. (n.d.). PENGARUH LOAN TO DEPOSITE RATIO, RETURN ON ASSETS, CAPITAL ADEQUACY RATIO, EXCHANGE RATE DAN INTEREST RATE TERHADAP RETURN SAHAM.
Choi, H. K. (2018). Stock Price Correlation Coefficient Prediction with ARIMA-LSTM Hybrid Model. http://arxiv.org/abs/1808.01560
Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM. Procedia Computer Science, 179(2020), 480–487. https://doi.org/10.1016/j.procs.2021.01.031
Deni Sunaryo, Nafiuddin, Ratu Erlina Gentari, D. K. (2021). The Effect of Current Ratio (CR), Debt to Equity Ratio (DER), and Earning Per Share (EPS) on Share Prices With Return on Assets as A Moderated Variables in Food and Beverage Subsectors Registered in 2012-2019 Assets Variables Registered in 2012-2019 Stock. International Journal of Entrepreneurship, 25(4), 1–19. https://www.scimagojr.com/journalsearch.php?q=19700175083&tip=sid
Diamendia, T., & Setyowati, M. S. (2021). Analisis Kebijakan Compliance Risk Management Berbasis Machine Learning Pada Direktorat Jenderal Pajak. Indonesian Treasury Review: Jurnal Perbendaharaan, Keuangan Negara Dan Kebijakan Publik, 6(3), 289–298. https://doi.org/10.33105/itrev.v6i3.401
Dong, X., Dang, B., Zang, H., Li, S., & Ma, D. (2024). The Prediction Trend of Enterprise Financial Risk based on Machine Learning ARIMA Model. 4(1), 65–71. https://doi.org/10.53469/jtpes.2024.04(01).09
Dyanasari, Asnah, & Siswadi, B. (2018). Pengantar Penerapan Ekonometrika. Jurnal Bisnis Dan Manajemen, 56–67.
Fan, D., Sun, H., Yao, J., Zhang, K., Yan, X., & Sun, Z. (2021). Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy, 220, 119708. https://doi.org/https://doi.org/10.1016/j.energy.2020.119708
Guerra, R. R., Vizziello, A., Savazzi, P., Goldoni, E., & Gamba, P. (2024). Forecasting LoRaWAN RSSI using weather parameters: A comparative study of ARIMA, artificial intelligence and hybrid approaches. Computer Networks, 243, 110258. https://doi.org/https://doi.org/10.1016/j.comnet.2024.110258
Hardiningsih, P., & Oktaviani, R. M. (2012). Determinan kebijakan hutang (dalam agency theory dan pecking order theory). Dinamika Akuntansi, Keuangan Dan Perbankan Universitas Stikubank, 1(1), 11–24.
Indirwan, S. S., & Karya, Mhd Azhar, Satya Arief, M. (2023). Pengaruh Debt to Equity Ratio (DER), Return On Asset (ROA) dan Earning Per Share terhadap Harga Saham dengan Kebijakan Dividen sebagai Variabel Intervening (Studi pada Perusahaan Manufaktur Sektor Industri Barang Konsumsi yang Terdaftar di Bursa Efek Indo. Jurnal Pendidikan Tambusai, 7(3), 21223–21231. https://jptam.org/index.php/jptam/article/view/9869
Jaya, H. (2021). Pengaruh Keputusan Investasi, Kebijakan Dividen, Dan Keputusan Pendanaan Terhadap Nilai Perusahaan. Measurement Jurnal Akuntansi, 15(1), 33–39. https://doi.org/10.33373/mja.v15i1.3331
Karmakar, R., Chatterjee, S., Datta, D., & Chakraborty, D. (2024). Application of harmony search algorithm in optimizing autoregressive integrated moving average: A study on a data set of Coronavirus Disease 2019. Systems and Soft Computing, 6, 200067. https://doi.org/https://doi.org/10.1016/j.sasc.2023.200067
Lestari, S. P., Siregar, Q. R., & Nasution, Y. A. (2024). Analisis Determinan Harga Saham: Peran Return On Assets, Debt To Equity Ratio Dan Earning Per Share Pada Perusahaan Aneka Industri Yang Terdaftar Di Bursa Efek Indonesia. Maneggio: Jurnal Ilmiah Magister Manajemen, 7(1), 120–134.
Lestari, T., & Wahyudin, A. (2021). Pengaruh Mekanisme Corporate Governance terhadap Financial Distress dengan Profitabilitas sebagai Variabel Moderating. Business and Economic Analysis Journal, 1(1), 50–62. https://doi.org/10.15294/beaj.v1i1.30145
Malczewski, J., & Czubak, W. (2021). Hybrid convolutional neural networks based framework for skimmed milk powder price forecasting. Sustainability (Switzerland), 13(7), 1–19. https://doi.org/10.3390/su13073699
Mehdizadeh, S., Fathian, F., & Adamowski, J. F. (2019). Hybrid artificial intelligence-time series models for monthly streamflow modeling. Applied Soft Computing, 80, 873–887. https://doi.org/https://doi.org/10.1016/j.asoc.2019.03.046
Melindasari, S. (2023). Pengaruh Kinerja Keuangan, Keputusan Investasi danStruktur Modal Terhadap Nilai Perusahaan padaPerusahaan Manufaktur Yang Terdaftar di Bursa EfekIndonesia. 1–83.
Munthe, K., & Ginting, R. D. B. (2023). Pengaruh Struktur Kepemilikan terhadap Nilai Perusahaan dengan Profitabilitas sebagai Variabel Intervening pada Perusahaan Perbankan yang Terdaftar di Bursa Efek Indonesia. Jurnal Manajemen Dan Bisnis, 23(1), 10–24. http://ejournal.ust.ac.id/index.php/JIMB_ekonomi
Nining, A. (2020). Pengaruh Debt to Equity Ratio (DER) Terhadap Harga Saham Pada Perusahaan Farmasi Di Bursa Efek Indonesia. Pinisi Journal of Art, Humanity & Social Studies, 1–7.
Nur Aini Tri Amanah, Baniady Gennody Pronosokodewo, & Ratna Pumama Sari. (2023). the Influence of Current Ratio, Debt To Equity Ratio, Net Profit Margin, and Sales Growth on Financial Distress Conditions. Count : Journal of Accounting, Business and Management, 1(1), 14–26. https://doi.org/10.61677/count.vi.42
Rejeb, A., Rejeb, K., & Zailani, S. (2024). Tracing knowledge diffusion flows in Islamic finance research: a main path analysis. Journal of Islamic Accounting and Business Research. https://doi.org/10.1108/JIABR-10-2023-0344
Samah, K. A. F. A., Mohd Khalid, N. A., Jasmis, J., Deraman, N. A., Riza, L. S., & Othman, Z. (2024). Autoregressive Integrated Moving Average (ARIMA) Algorithm Adaptation for Business Financial Forecasting. Journal of Advanced Research in Applied Sciences and Engineering Technology, 38(1), 37–47. https://doi.org/10.37934/araset.38.1.3747
Saputra, D. R. K., Via, Y. V., & Sihananto, A. N. (2024). Deteksi Anomali Menggunakan Ensemble Learning Dan Random Oversampling Pada Penipuan Transaksi Keuangan. Jurnal Informatika Dan Teknik Elektro Terapan, 12(3), 2779–2788. https://doi.org/10.23960/jitet.v12i3.4910
Setiyawati, N., & Wahyuningsih, E. S. (2024). Faktor yang Berpengaruh Terhadap Pertumbuhan Laba Pada Perusahaan Terdaftar Dalam Indeks LQ 45 HOW TO CITE : Setiyawati , N ., Wahyuningsih , E . S ., Nirmala , N . & Cahyo , H . ( 2023 ). Faktor yang Berpengaruh Terhadap Pertumbuhan Laba Pada Perusahaan . 21(2023), 225–234.
Shahzadi, H., & Anwar, S. (2024). Evaluating Financial Inclusion Trends in Pakistan : An Autoregressive Integrated Moving Average Forecasting and Box-Jenkins Q Test Validation. 5(3), 229–241.
Shumway, R. H., & Stoffer, D. S. (2017). ARIMA Models BT - Time Series Analysis and Its Applications: With R Examples (R. H. Shumway & D. S. Stoffer (eds.); pp. 75–163). Springer International Publishing. https://doi.org/10.1007/978-3-319-52452-8_3
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). A Comparative Analysis of Forecasting Financial Time Series Using ARIMA, LSTM, and BiLSTM. http://arxiv.org/abs/1911.09512
Sunaryo, D. (2019). Pengaruh Resiko Bisnis Dan Growth Opportunity Terhadap Struktur Modal Pada Perushaan Manufaktur Sub Sektor Kosmetik Dan Barang Keperluan Rumah Tangga Yang Terdaftar Di Bursa Efek Indonesia Priode 2012-2017. Jurnal Riset Akuntansi Terpadu, 12(1), 22–40. https://doi.org/10.35448/jrat.v12i1.5193
Sunaryo, D. (2021a). Analysis Of Current Ratio, Debt To Assets Ratio And Gross Profit Margin On Financial Distress With Moderated Share Prices In Retail Companies Listed In Securities Exchange. International Journal of Educational Research & Social Sciences, 2(1), 23–33. https://doi.org/10.51601/ijersc.v2i1.39
Sunaryo, D. (2021b). Manajemen Investasi dan Portofolio. CV. Qiara Media.
Sunaryo, D. (2022). What Is Share Prices Can Affect Return on Assets, Total Asset Turnover, and Current Ratio With Financial Distress and Earnings Per Share As a Moderating Variable. International Journal of Economy, Education and Entrepreneurship (IJE3), 2(2), 422–437. https://doi.org/10.53067/ije3.v2i2.82
Syukriyannur, A. (2022). Analisis Kinerja Keuangan Pada Perusahaan Manufaktur Yang Terdaftar Di Bursa Efek Indonesia. General Ledger : Jurnal Studi Ilmu Akuntansi Dan Keuangan, 1(1), 37–43. https://doi.org/10.61715/gledger.v1i1.4
Urrochman, M. Y., Setyati, E., & Kristian, Y. (2023). Prediksi Timing Financial Distress Pada Bank Perkreditan Rakyat di Indonesia Menggunakan Machine Learning. Jutisi: Jurnal Ilmiah …, 12(2), 576–584.
Xu, D., Zhang, Q., Ding, Y., & Zhang, D. (2022). Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting. Environmental Science and Pollution Research, 29(3), 4128–4144. https://doi.org/10.1007/s11356-021-15325-z
Yadav, D. K., S., K., & Goswami, L. (2024). Autoregressive Integrated Moving Average Model for Time Series Analysis. 2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC), 1–6. https://doi.org/10.1109/ICOCWC60930.2024.10470488
Yang, F., Ye, X., Huang, W., & Zhao, X. (2023). The impacts on informal financing strategy of small and micro enterprises by interest rate risks and public health emergencies. In International Entrepreneurship and Management Journal (Vol. 19, Issue 4). Springer US. https://doi.org/10.1007/s11365-023-00872-3
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159–175. https://doi.org/https://doi.org/10.1016/S0925-2312(01)00702-0
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Deni Sunaryo, Hamdan, Alfina Anggriani, Cecilia Winata, Dian Denta Alumi
This work is licensed under a Creative Commons Attribution 4.0 International License.