Experimental Analysis of the Effect of Printing Parameters of 3D Printer FDM Machine on Dimensional Error and Surface Hardness of PLA+ Material
DOI:
https://doi.org/10.30656/intech.v11i2.11210Keywords:
3D Printer, FDM, Optimization , PLA+, Surface HardnessAbstract
PLA material is one of the most commonly used materials in Fused Deposition Modelling 3D printers for various purposes. The quality of the printed part can be assessed from its dimensional accuracy and surface hardness. The method used to determine the appropriate parameters for achieving optimal results is the 2k factorial design method. The parameters studied include BTT, WT, and FP. The levels for BTT were set at 1 mm and 3 mm, WT were 1 mm and 2 mm, and FP consists of concentric and lines. Statistical analysis revealed that several parameters significantly influence the response. The statistical analysis results show factors with a P-value < 0.05 (α = 0.05). The WDE response shows an interaction between BTT, WT, and FP. The HDE response indicates that the interactions between BTT and WT, BTT and FP, WT and FP, and WT affect HDE. In the SH response, the factors BTT, WT, and the interaction between WT and PT affected SH. Meanwhile, in the LDE response, all factors had P-values > 0.05. This study also found that WT individually affects HDE, WDE, and SH. On the other hand, the WT factor interacts with BTT and FP to affect SH.
Downloads
References
Almy, R. D., & Tontowi, A. E. (2018). The Effect of 3D Printing Machine Parameters in Extrusion Process of Biocomposite Materials (PMMA and HA) on Dimensional Accuracy. SINERGI, 22(2), 83–90. https://doi.org/10.22441/sinergi.2018.2.003
American Society of Testing and Materials. (2015). ASTM D2240-15 Standard Test Methods for Rubber Property-Durometer Hardness. Annual Book of ASTM Standards. Pennsylvania: ASTM International. https://doi.org/10.1520/D2240-15.2
Arief, S., Rosid, I. A., Dewi, G. S., & Finansia, C. (2024). Parameter Optimization of DLP 3D Printing Machine for Thermoplastic Polyurethane Material to Minimize Dimensional Error. AIP Conference Proceedings, 2991(1). https://doi.org/10.1063/5.0199448
Bose, S., Vahabzadeh, S., & Bandyopadhyay, A. (2013). Bone Tissue Engineering Using 3D Printing. Biochemical Pharmacology, 16(12), 496–504. https://doi.org/10.1016/j.mattod.2013.11.017
Eguren, J. A., Esnaola, A., & Unzueta, G. (2020). Modelling of an Additive 3D-Printing Process Based on Design of Experiments Methodology. Quality Innovation Prosperity, 24(1), 128–151. https://doi.org/10.12776/QIP.V24I1.1435
Espino, M. T., Tuazon, B. J., Robles, G. S., & Dizon, J. R. C. (2020). Application of Taguchi Methodology in Evaluating the Rockwell Hardness of SLA 3D Printed Polymers. Materials Science Forum, 1005, 166–173. https://doi.org/10.4028/www.scientific.net/MSF.1005.166
Ferretti, P., Leon-Cardenas, C., Sali, M., Santi, G. M., Frizziero, L., Donnici, G., & Liverani, A. (2021). Application of TPU-sourced 3D Printed FDM Organs for Improving the Realism in Surgical Planning and Training. In Proceedings of the International Conference on Industrial Engineering and Operations Management (pp. 6658–6669). https://doi.org/10.46254/AN11.20211136
Ford, S., & Despeisse, M. (2016). Additive Manufacturing and Sustainability: an Exploratory Study of the Advantages and Challenges. Journal of Cleaner Production, 137(June), 1573–1587. https://doi.org/10.1016/j.jclepro.2016.04.150
Latif, H. A., Rosid, I. A., Dewi, G. S., & Jatiningsih, M. G. D. (2024). Optimasi Multi Parameter Mesin 3D Printer FDM untuk Material Thermoplastic Polyurethane Guna Menghasilkan Error Dimensi Terkecil Menggunakan Metode 2k Factorial Design. Jurnal Ilmiah Teknik Industri, 12(1), 41–49. https://doi.org/10.24912/jitiuntar.v12i1.27105
Natoen, A., AR, S., Satriawan, I., & Periansya. (2018). Faktor-Faktor Demografi yang Berdampak Terhadap Kepatuhan Wajib Pajak Badan (UMKM) di Kota Palembang. Jurnal Riset Terapan Akuntansi, 2(2), 101–115. https://jurnal.polsri.ac.id/index.php/jrtap/article/view/1409
Nowacki, B., Kowol, P., Kozioł, M., Olesik, P., Wieczorek, J., & Wacławiak, K. (2021). Effect of Post-process Curing and Washing Time on Mechanical Properties of mSLA Printouts. Materials, 14(17), 1–13. https://doi.org/10.3390/ma14174856
Pettalolo, A. N. Y., Rosid, I. A., & Tontowi, A. E. (2022). Pengembangan Mesin 3D Printing Bangunan Untuk Material Sisa Reruntuhan Bangunan. Jurnal Peradaban Sains, Rekayasa Dan Teknologi, 10(1), 122–133. https://doi.org/10.37971/radial.v10i1.226
Pratama, W. H., Hasdiansah, & Husman. (2021). Optimasi Parameter Proses 3D Printing Terhadap Kuat Tarik Material Filamen PLA + Menggunakan Metode Taguchi. Sprocket Journal of Mechanical Engineering, 3(1), 39–45. https://doi.org/10.36655/sprocket.v3i1.568
Prihadianto, B. D., Darmo, S., & Krisnaputra, R. (2022). Pengaruh Pengaturan Fill Density Terhadap Sifat Mekanis Polylactic Acid Hasil Teknologi Fused Deposition Modelling. Jurnal Teknologi Terpadu, 10(1), 28–33. https://doi.org/10.32487/jtt.v10i1.1406
Rosid, I. A., & Tontowi, A. E. (2021). Parameter Optimization of Customized FDM 3D Printer Machine for Biocomposite Material [Sago/PMMA] Using 2k Fractional Factorial Design. OPSI, 14(2), 188–196. https://doi.org/10.31315/opsi.v14i2.5352
Rusianto, T., & Huda, S. (2019). A Riview : Jenis dan Pencetakan 3D (3D Printing) Untuk Pembuatan Prototipe. Jurnal Teknologi, 12(28), 14–21. https://ejournal.akprind.ac.id/index.php/jurtek/article/view/2156
Seprianto, D., Oktora, A., Zamheri, A., & Wilza, R. (2021). Pengaruh Diameter Nozzle dan Tebal Layer Terhadap Ketelitian Objek Printer 3D. Jurnal Teknik Mesin, 14(1), 40–46. https://doi.org/10.30630/jtm.14.1.547
Septiadi, A., & Ramadhani, W. K. (2020). Penerapan Metode ANOVA untuk Analisis Rata-rata Produksi Donat, Burger, dan Croissant pada Toko Roti Animo Bakery. Bulletin of Applied Industrial Engineering Theory, 1(2), 60–64. https://jim.unindra.ac.id/index.php/baiet/article/view/2845
Shashi, G. M., Laskar, A. R., & Biswas, H. (2017). A Brief Review of Additive Manufacturing with Applications. In Proceedings of 14th Global Engineering and Technology Conference (pp. 1–23). Dhaka: BIAM Foundation. https://doi.org/10.6084/m9.figshare.12520667
Sukiman, B., & Tontowi, A. E. (2018). Optimasi Desain Stent PLA Menggunakan Metode Response Surface (RSM) untuk Memperolah Fleksibilitas Terbaik. Teknosains, 8(1), 48–65. https://doi.org/10.22146/teknosains.35387
Tappa, K., & Jammalamadaka, U. (2018). Novel Biomaterials Used in Medical 3D Printing Techniques. Functional Biomaterials, 9(17). https://doi.org/10.3390/jfb9010017
Tay, Y. W. D., Panda, B., Paul, S. C., Noor Mohamed, N. A., Tan, M. J., & Leong, K. F. (2017). 3D Printing Trends in Building and Construction Industry: a Review. Virtual and Physical Prototyping, 12(3), 261–276. https://doi.org/10.1080/17452759.2017.1326724
Tontowi, A. E., Ramdani, L., Erdizon, R. V., & Baroroh, D. K. (2017). Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part, 9(2), 589–600. https://doi.org/10.21817/ijet/2017/v9i2/170902044
Tontowi, A. E., & Putra, D. A. (2015). Effect of Sericin in [ HA / Bioplastic ] Composite Composed by 2k Factorial Design Method on Solidification Time and Tensile Strength. International Journal of Engineering and Technology, 7(5), 1943–1951. https://www.researchgate.net/publication/298767356
Winarni, S., Sunengsih, N., & Anugrah, R. I. (2019). Penerapan Desain Fractional Factorial dalam Menentukan Faktor Berpengaruh pada Eksperimen Pelindian Konsentrat Galena (PBS). STATISTIKA Journal of Theoretical Statistics and Its Applications, 19(2), 83–92. https://doi.org/10.29313/jstat.v19i2.4887
Yakout, M., Elbestawi, M., & Veldhuis, S. C. (2018). A Review of Metal Additive Manufacturing Technologies. Solid State Phenomena, 278, 1–14. https://doi.org/10.4028/www.scientific.net/SSP.278.1
Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., & Shi, Y. (2018). A Review of 3D Printing Technology for Medical Applications. Engineering, 4(5), 729–742. https://doi.org/10.1016/j.eng.2018.07.021
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibnu Abdul Rosid, Rama Sahtyawan, Grita Supriyanto Dewi, Putri Noviana Nih Pratama

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



.png)
.png)
.png)



.png)

.png)