Perbandingan Algoritma Regresi Linear Sederhana dan Regresi Polinomial Dalam Prediksi Jumlah Penumpang Kereta Api Di Wilayah Jabodetabek

Authors

  • Ubaedillah Rohman University Esa Unggul
  • Jefry Sunupurwa Asri University Esa Unggul
  • Hani Dewi Ariessanti University Esa Unggul
  • Sawali Wahyu University Esa Unggul

DOI:

https://doi.org/10.30656/protekinfo.v12i1.9842

Abstract

Intisari— Di era digital saat ini pertumbuhan data semakin mengalami peningkatan yang signifikan sehingga memerlukan solusi untuk analisis data yang efisien dan efektif. Machine learning menjadi solusi dikarenakan teknologi ini banyak digunakan di berbagai sektor. Diantara teknik machine learning algoritma regresi linear sederhana dan regresi polinomial berperan dalam melakukan analisis prediksi. Tujuan dari penelitian ini adalah membandingkan kinerja algoritma regresi linear sederhana dan regresi polinomial dalam prediksi jumlah penumpang kereta api di wilayah jabodetabek. Hasil penelitian akan menentukan manakah algoritma yang lebih akurat dalam memprediksi. Dari hasil penelitian regresi polinomial order 3 mendapatkan hasil akurasi tertinggi dengan R-Square 0.8983, MAPE 0.0704, dan RMSE 1446.6222 dibandingkan dengan regresi linear sederhana dengan R-Square 0.7943, MAPE 0.1013, dan RMSE 1713.8127.

Kata kunci— Perbandingan, Regresi linear sederhana, Regresi polinomial, Prediksi, Jumlah penumpang kereta

 

Abstract— In today's digital era, data growth is increasing significantly, requiring solutions for efficient and effective data analysis. Machine learning is the solution because this technology is widely used in various sectors. Among the machine learning techniques, simple linear regression algorithms and polynomial regression play a role in conducting predictive analysis. The purpose of this study is to compare the performance of simple linear regression algorithms and polynomial regression in predicting the number of train passengers in the Jabodetabek area. The results of the study will determine which algorithm is more accurate in predicting. From the results of the study, polynomial regression order 3 obtained the highest accuracy results with R-Square 0.8983, MAPE 0.0704, and RMSE 1446.6222 compared to simple linear regression with R-Square 0.7943, MAPE 0.1013, and RMSE 1713.8127.

KeywordsComparison, Simple linear regression, Polynomial regression, Prediction, Number of train passengers.

 

 

Downloads

Published

2025-03-01

Issue

Section

Articles