Optimasi Waktu Penyelesaian Kuota Vaksin pada Layanan Vaksinasi di Pusat Perbelanjaan dengan Simulasi Kejadian Diskrit

Authors

  • Ivan Keane Hutomo Universitas Katolik Widya Mandala Surabaya
  • Khenny Hosana Universitas Katolik Widya Mandala Surabaya
  • Ivan Gunawan Universitas Katolik Widya Mandala Surabaya
  • Lusia Permata Sari Hartanti Universitas Katolik Widya Mandala Surabaya

DOI:

https://doi.org/10.30656/intech.v9i1.5045

Keywords:

Antrean Vaksinasi, Simulasi Kejadian Diskrit, Vaksinasi Massal COVID-19

Abstract

Pemerintah Indonesia berjuang mengatasi pandemi COVID-19 ini dengan memberikan vaksin gratis terhadap masyarakat guna menciptakan herd immunity. Tempat penyelenggaraan vaksin yang terbatas dan desakan untuk segera menyelesaikan target vaksinasi memunculkan ide untuk menjadikan pusat perbelanjaan sebagai tempat vaksinasi massal. Pusat perbelanjaan hanya dapat menyediakan waktu yang terbatas untuk menyelenggarakan layanan vaksin. Layanan vaksin harus selesai sebelum pusat perbelanjaan beroperasi agar tidak mengganggu pengunjung pusat perbelanjaan. Studi ini bertujuan menemukan konfigurasi sistem antrean yang optimal untuk menyele­saikan kuota dosis vaksin yang diberikan pemerintah pada setiap penye­lenggaraan vaksinasi massal di pusat perbelanjaan.  Studi ini dilakukan pada konfigurasi sistem antrean vaksinasi massal yang diselenggarakan di lobi Galaxy Mall 3 di Surabaya. Model simulasi kejadian diskrit dikembangkan untuk merepresentasikan sistem nyata dan mengevaluasi konfigurasi sistem antrean vaksinasi booster. Tiga usulan skenario perbaikan yang aplikatif telah diuji. Hasilnya, skenario 3 (kombinasi skenario 1 dan skenario 2) yakni meng­gandakan kapasitas booth 4 dan mengurai penumpukan di ruang tunggu luar dengan meningkatkan ukuran kelompok peserta vaksin yang masuk dari 6 menjadi 9 merupakan strategi operasional yang paling efektif untuk mening­katkan performa sistem antrean. Waktu yang dibutuhkan untuk menyelesaikan 250 dosis vaksin turun sebesar 45% dari 2,5350 jam pada kondisi awal menjadi 1,3989 jam pada skenario 3.

References

Aldila, D., Khoshnaw, S. H. A., Safitri, E., Anwar, Y. R., Bakry, A. R. Q., Samiadji, B. M., Anugerah, D. A., GH, M. F. A., Ayulani, I. D., & Salim, S. N. (2020). A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia. Chaos, Solitons & Fractals, 139, 110042. https://doi.org/10.1016/j.chaos.2020.110042

Asgary, A., Blue, H., Cronemberger, F., & Ni, M. (2022). Simulating a Hockey Hub COVID-19 Mass Vaccination Facility. Healthcare, 10(5), 843. https://doi.org/10.3390/healthcare10050843

Badan Pusat Statistik. (2022). Jumlah Penduduk Pertengahan Tahun (Ribu Jiwa), 2020-2022. Badan Pusat Statistik. https://www.bps.go.id/indicator/12/1975/1/jumlah-penduduk-pertengahan-tahun.html

Bhat, U. N. (2015). An Introduction to Queueing Theory (Vol. 36). Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8421-1

Brambilla, A., Mangili, S., Macchi, M., Trucco, P., Perego, A., & Capolongo, S. (2021). Covid-19 Massive Vaccination Center Layouts. A Modular and Scalable Model for Lombardy Region, Italy. Acta Bio Medica: Atenei Parmensis, 92(6), 1–11. https://doi.org/10.23750/abm.v92iS6.12229

Chenchula, S., Karunakaran, P., Sharma, S., & Chavan, M. (2022). Current evidence on efficacy of COVID-19 booster dose vaccination against the Omicron variant: A systematic review. Journal of Medical Virology, 94(7), 2969–2976. https://doi.org/https://doi.org/10.1002/jmv.27697

Drake, C. (2019). National Integration in Indonesia: Patterns and Policies. University of Hawaii Press. https://books.google.co.id/books?id=TVrGDwAAQBAJ

Frederiksen, L. S. F., Zhang, Y., Foged, C., & Thakur, A. (2020). The Long Road Toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Frontiers in Immunology, 11, 1817. https://doi.org/10.3389/fimmu.2020.01817

Fun, W. H., Tan, E. H., Khalid, R., Sararaks, S., Tang, K. F., Ab Rahim, I., Md. Sharif, S., Jawahir, S., Sibert, R. M. Y., & Nawawi, M. K. M. (2022). Applying Discrete Event Simulation to Reduce Patient Wait Times and Crowding: The Case of a Specialist Outpatient Clinic with Dual Practice System. Healthcare, 10(2), 189. https://doi.org/10.3390/healthcare10020189

Green, L., & Yih, Y. (2016). Queueing Theory and Modeling*. In Handbook of Healthcare Delivery Systems (pp. 235–252). CRC Press. https://doi.org/10.1201/b10447-20

Hanly, M., Churches, T., Fitzgerald, O., Caterson, I., MacIntyre, C. R., & Jorm, L. (2022). Modelling vaccination capacity at mass vaccination hubs and general practice clinics: a simulation study. BMC Health Services Research, 22(1), 1–11. https://doi.org/10.1186/s12913-022-08447-8

Hupert, N., Mushlin, A. I., & Callahan, M. A. (2002). Modeling the Public Health Response to Bioterrorism: Using Discrete Event Simulation to Design Antibiotic Distribution Centers. Medical Decision Making, 22(1), 17–25. https://doi.org/10.1177/027298902237709

Kumar, P., Erturk, V. S., & Murillo-Arcila, M. (2021). A new fractional mathematical modelling of COVID-19 with the availability of vaccine. Results in Physics, 24, 104213. https://doi.org/10.1016/j.rinp.2021.104213

Monks, T., Currie, C. S. M., Onggo, B. S., Robinson, S., Kunc, M., & Taylor, S. J. E. (2019). Strengthening the reporting of empirical simulation studies: Introducing the STRESS guidelines. Journal of Simulation, 13(1), 55–67. https://doi.org/10.1080/17477778.2018.1442155

Saidani, M., Kim, H., & Kim, J. (2021). Designing optimal COVID-19 testing stations locally: A discrete event simulation model applied on a university campus. PLOS ONE, 16(6), e0253869. https://doi.org/10.1371/journal.pone.0253869

Sargent, R. G. (2010). Verification and validation of simulation models. Proceedings of the 2010 Winter Simulation Conference, 166–183. https://doi.org/10.1109/WSC.2010.5679166

Su, Z., McDonnell, D., Li, X., Bennett, B., Šegalo, S., Abbas, J., Cheshmehzangi, A., & Xiang, Y.-T. (2021). COVID-19 Vaccine Donations—Vaccine Empathy or Vaccine Diplomacy? A Narrative Literature Review. Vaccines, 9(9), 1024. https://doi.org/10.3390/vaccines9091024

Valeriano, C. M. C., Ilo, C. K. K., Illescas, M. K. A., Dahilig, J. A. V, & Estember, R. D. (2021). Queuing Theory: A Case Study in Analyzing the Vaccination Service in Quezon City. The International Conference on Industrial Engineering and Operations Management, 2521–2531. http://ieomsociety.org/proceedings/2021monterrey/439.pdf

Villaflores, J. A. J., Llegos, M. Z. A., Guna, U. K. L., Faminiano, M. A. F., Cruzado, L. D., Mendoza, K. R., & Reyes, J. E. A. (2021). Process Improvement of COVID-19 Vaccination System by utilizing Queuing Theory and ProModel Simulator on Vaccination Facilities in Metro Manila. The Second Asia Pacific International Conference on Industrial Engineering and Operations Management, 1, 2075–2085. http://ieomsociety.org/proceedings/2021indonesia/392.pdf

Wood, R. M., Moss, S. J., Murch, B. J., Davies, C., & Vasilakis, C. (2021). Improving COVID-19 vaccination centre operation through computer modelling and simulation. medRxiv, 1–21. https://www.medrxiv.org/content/10.1101/2021.03.24.21253517v1

Wood, R. M., Murch, B. J., Moss, S. J., Tyler, J. M. B., Thompson, A. L., & Vasilakis, C. (2021). Operational research for the safe and effective design of COVID-19 mass vaccination centres. Vaccine, 39(27), 3537–3540. https://doi.org/10.1016/j.vaccine.2021.05.024

World Health Organization. (2022). 14.9 million excess deaths associated with the COVID-19 pandemic in 2020 and 2021. World Health Organization. https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-19-pandemic-in-2020-and-2021

Downloads

Published

2023-06-01

Issue

Section

Articles

How to Cite

Optimasi Waktu Penyelesaian Kuota Vaksin pada Layanan Vaksinasi di Pusat Perbelanjaan dengan Simulasi Kejadian Diskrit. (2023). Jurnal INTECH Teknik Industri Universitas Serang Raya, 9(1), 13-21. https://doi.org/10.30656/intech.v9i1.5045