Inventory Analysis of Packed Red Cells Components Using Monte Carlo Simulation

Authors

  • Fachrul Yazid Fasyabib Telkom University
  • Nabila Noor Qisthani Telkom University
  • Yulinda Uswatun Kasanah Telkom University

DOI:

https://doi.org/10.30656/intech.v11i1.10388

Keywords:

Blood Inventory Management, Blood Supply, Monte Carlo, Packed Red Cells, Simulation

Abstract

This study analyzes Packed Red Cells (PRC) inventory management at PMI Banyumas using a Monte Carlo simulation to evaluate different stock management strategies. The initial model shows a significant shortage of blood supply. Two alternative scenarios were simulated to address this issue: adding 55 additional units from external sources and increasing donor participation by 15%. The simulation results demonstrate that these strategies effectively reduce the shortage from 62 units to just 5 units without increasing expired inventory while achieving the lowest total cost of Rp. 9,927,682. These findings highlight that increasing donor participation offers the best performance in balancing supply and demand. This study provides simulation-based strategic recommendations that other PMI branches can replicate to improve bloodstock management, reduce shortages, and maintain optimal service levels.

Downloads

Download data is not yet available.

References

Abidovna, A. S. (2023). Monte Carlo Modeling and Its Peculiarities in the Implementation of Marketing Analysis in the Activities of the Enterprise. Gospodarka i Innowacje., 42, 375–380. https://www.gospodarkainnowacje.pl/index.php/issue_view_32/article/view/2091

Ahmadimanesh, monireh, Pooya, A., Safabakhsh, H., & Sadeghi, S. (2022). Designing an Optimal Model of Blood Logistics Management with the Possibility of Return in the Three-Level Blood Transfusion Network. https://doi.org/10.21203/rs.3.rs-1187827/v1

Ahmadimanesh, M., Safabakhsh, H. R., & Sadeghi, S. (2023). Designing an optimal model of blood logistics management with the possibility of return in the three-level blood transfusion network. BMC Health Services Research, 23(1), 1304. https://doi.org/10.1186/s12913-023-10240-0

Akerina, L. J. C., & Adi, T. W. (2023). Simulasi Perhitungan Kebutuhan Refueller Dengan Menggunakan Software Arena di PT.XYZ. JJurnal Terapaan Logistik Migas, 2(1), 151. https://jtlm.akamigas.ac.id/index.php/jtlmig/article/view/40

Al-Farisy, A. F. (2023). Anaemia In Pregnancy: The Impact on Maternal and Fetal Health, Innovation, and Management in Kedungjati Primary Health Care. Jurnal Medika Malahayati, 7(1), 516–525. https://doi.org/10.33024/jmm.v7i1.9626

Anchinmane, V. T., & Sankhe, S. V. (2022). Analysis of Rate and Reasons of Discarding of Blood and its Components in Tertiary Care Hospital Blood Bank. International Journal of Pharmaceutical Sciences Review and Research, 113–115. https://doi.org/10.47583/ijpsrr.2022.v75i01.020

Awandani, H. (2022). Determination Strategy for Controlling Bloodstock Components Packed Red Cell Using Monte Carlo Simulation. Jurnal Sistem Teknik Industri, 24(1), 137–146. https://doi.org/10.32734/jsti.v24i1.7746

Darnis, R., Nurcahyo, G. W., & Yunus, Y. (2020). Simulasi Monte Carlo untuk Memprediksi Persediaan Darah. Jurnal Informasi Dan Teknologi, 2(4), 139–144. https://doi.org/10.37034/jidt.v2i4.98

Direktorat Jenderal Kependudukan dan Pencatatan Sipil. (2021). Dirjen Dukcapil: Indonesia miliki bank data 379 juta golongan darah. https://dukcapil.kalbarprov.go.id/post/dirjen-dukcapil-indonesia-miliki-bank-data-37-9-juta-golongan-darah

Efendi, G., & Zahmi, A. (2023). Optimalisasi Persediaan Darah Dengan Metoda Monte Carlo (Studi Kasus UTD PMI Solok). Journal of Operation System, 1(2), 99–113. https://www.ejournal.ybpindo.or.id/index.php/jos/article/view/35

Harahap, W. A. (2024). Implementasi Metode Monte Carlo Dalam Melakukan Prediksi Populasi Jumlah Hewan Ternak Babi Di Nusa Tenggara Timur. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 4478–4481. https://doi.org/10.36040/jati.v8i4.9966

Hasanah, W. P. (2024). Manajemen Persediaan Darah Komponen Packed Red Cell (PRC) Menggunakan Simulasi Monte Carlo. Action Research Literate, 8(7), 1–15. https://doi.org/10.46799/arl.v8i7.447

Imamoglu, G., Topcu, Y. I., & Aydin, N. (2023). A Systematic Literature Review of the Blood Supply Chain through Bibliometric Analysis and Taxonomy. Systems, 11(3), 124. https://doi.org/10.3390/systems11030124

Jin, X., Tang, H., & Huang, Y. (2021). Dynamic Stochastic Optimization of Emergent Blood Collection and Distribution from Supply Chain Perspective. Complexity, 2021(1). https://doi.org/10.1155/2021/5532672

Maegele, M., Lier, H., & Hossfeld, B. (2023). Pre-hospital blood products for the care of bleeding trauma patients. Deutsches Ärzteblatt International, 120(4), 670–676. https://doi.org/10.3238/arztebl.m2023.0176

Maitra, S. (2024). Inventory Management Under Stochastic Demand: A Simulation-Optimization Approach. https://doi.org/10.48550/arXiv.2406.19425

Maulana, R. (2024). Aplikasi Metode Monte Carlo Dalam Analisis Prediksi Impor Beras Dari Pakistan. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 6021–6027. https://doi.org/10.36040/jati.v8i4.10139

Navarra, A. (2021). The role of systematic errors. National Science Review, 8(10). https://doi.org/10.1093/nsr/nwab082

Putri, V. A., & Sitepu, S. (2024). Perbandingan Akurasi Metode Fuzzy Mamdani dan Fuzzy Sugeno dalam Memprediksi Kebutuhan Darah PMI Kota Medan. FARABI: Jurnal Matematika Dan Pendidikan Matematika, 7(2), 152–162. https://doi.org/10.47662/farabi.v7i2.757

Sadeghi, M. (2022). Model-Based Decision Making in Life Sciences [Northeastern University]. https://www.proquest.com/openview/fde4df90884f063c463696f8cc80e248/1?pq-origsite=gscholar&cbl=18750&diss=y

Saviano, A., Perotti, C., Zanza, C., Longhitano, Y., Ojetti, V., Franceschi, F., Bellou, A., Piccioni, A., Jannelli, E., Ceresa, I. F., & Savioli, G. (2024). Blood Transfusion for Major Trauma in Emergency Department. Diagnostics, 14(7), 708. https://doi.org/10.3390/diagnostics14070708

Sumbogo, D. W. (2021). Kualitas (Tingkat Hematokrit) dan Potensi Hemolisis dari Packed Red Cell (PRC) Selama Proses Suplai Darah di Unit Transfusi Darah Palang Merah Indonesia Kota Jakarta Utara Tahun 2020. Jurnal Genta Kebidanan, 11(1), 12–22. https://doi.org/10.36049/jgk.v11i1.36

Torrado, A., & Barbosa-Póvoa, A. (2022). Towards an Optimized and Sustainable Blood Supply Chain Network under Uncertainty: A Literature Review. Cleaner Logistics and Supply Chain, 3, 100028. https://doi.org/10.1016/j.clscn.2022.100028

Velikova, T., Mileva, N., & Naseva, E. (2024). Method “Monte Carlo” in healthcare. World Journal of Methodology, 14(3), 2. https://doi.org/10.5662/wjm.v14.i3.93930

Downloads

Published

2025/06/12

Issue

Section

Articles

How to Cite

Fasyabib, F. Y., Qisthani, N. N., & Kasanah, Y. U. (2025). Inventory Analysis of Packed Red Cells Components Using Monte Carlo Simulation. Jurnal INTECH Teknik Industri Universitas Serang Raya, 11(1), 22-30. https://doi.org/10.30656/intech.v11i1.10388