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Abstract 

The environment of construction industry was known to have a high risk and high number of occupational accidents and injuries. 

One of the main causes of the occurrences was the construction workers' negligence in wearing personal protection equipment. 

Computer vision-based approaches were developed to assist in personal protective equipment adherence to address this issue. 

Using lightweight machine learning algorithms, object recognition can help to detect if the PPEs are worn correctly. We 

evaluated performance of YOLOv8-Nano and YOLOv9-Tiny (state of the art lightweight object detection models). Custom dataset 

was used for training the models and then metrics like F1 score, precision, recall mAP50 and mAP50-95 were used to evaluate 

both models’ performance. Results found that both models were able to show promising real time detections, but the YOLOv9-

Tiny model was able to outperform the YOLOv8-Nano model on many evaluation metrics. Specifically, in terms of mAP, YOLOv8-

Nano achieved an mAP50 of 81.48, while YOLOv9-Tiny attained a slightly higher mAP50 of 82.70. Higher efficiency in these 

parameters will help small industry to enforce PPE adherence monitoring using edge device at a relatively low cost. Lastly, 

enhanced enforcement of PPE regulations through automated detection system can contribute to improve workplace safety which 

in turns will lead to less injuries. 
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I. INTRODUCTION 

Construction industry is an important sector in economy, 

which strengthens the base for infrastructure and city planning. 

But, nonetheless, this industry has a notoriously high risk 

involved, with many workplace accidents and injuries 

occurring yearly [1]. The main reason for these incidents is due 

to the negligence by construction workers of PPE [2][3][4]. 

From a recent study, it was found construction sites are 

responsible for more than 71 percent of workplace accidents 

compared to all other industry [5]. Employers and employees 

should concentrate on safe working by avoiding the problems 

associated with the use of PPE. However, it may be 

inconvenient to monitor and enforce due to dynamism and 

mobility at the workplace as well as the high number of workers 

at the site [6]. This challenge has been addressed through 

several prevention attempts. One of them is research carried out 

by [7] focused on the real-time PPE monitoring system using 

RFID technology and body area networks to monitor the 

presence of PPE. The result shows that the system is able to 

determine whether each worker is wearing the required PPEs, 

monitoring their presence and warning the worker if they are 

not properly used and sends a report to a central unit where 

alerts and historical data are generated.  

Besides the method of using RFID sensors, PPE adherence 

monitoring can be assisted by computer vision-based 

approaches, which can potentially automate the process and 

provide a scalable solution to the industry [2][6][8]. Continuous 

real-time monitoring of such construction site, recording the 

presence and use of any personal protective equipment like 

hard hats, vests, gloves, safety goggles and boots would be 

possible through this system. The system can automatically 

detect when a worker is not wearing required PPE and send 

immediate alerts to allow immediate corrective action. An 

active approach like this can also cut the risk of potential 

accidents and maintain overall safety on the construction site. 

A computer vision-based PPE detection system can serve as 

such a much needed scalable and efficient approach in 

addressing the problems related to manual monitoring and 

enforcing PPE in the dynamic construction environment. 

Within the broader field of computer vision, object 

recognition serves as a crucial subfield, focusing specifically 

on the ability of a computer system or algorithm to identify and 

understand objects in the images or videos [12]. Machine 
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learning, which has emerged as a powerful tool for solving 

complex problems and making accurate predictions from data, 

plays a fundamental role in enhancing both computer vision 

and object recognition applications [9][10][11]. By leveraging 

lightweight machine learning algorithms such as the YOLO 

Series, MobileNet, GhostNet, and ShuffleNet—known for their 

computationally efficiency and real-time processing 

capabilities in resource constrained environments [13][14]. 

These lightweight models, characterized by fewer parameters 

and lower computational demands compared to traditional deep 

learning models, are particularly well-suited for deployment on 

mobile devices, embedded systems, and edge devices, making 

them highly applicable for PPE compliance monitoring in 

construction settings [15][16]. 

PPE detection using computer vision technology has been 

developed in the last couple of years. Some of them are the 

research conducted by [17] which focused on develop and 

evaluate deep learning to detect essential PPE components in 

Real-time using YoloV3 model. Later, in research conducted 

by [18], an improvement had been made on the previously 

mentioned study. It was to improve YoloV5 model, simplify 

the network structure and greatly reduce the model size, 

parameters and computation complexity. The result showed 

that, for the improved YoloV5, the time of detection was 105 

FPS with mAP of 84.2 %, compared to other models. Another 

research conducted by [19] developed a custom YoloV8-

Medium model for PPE detection. The researchers found that 

the model is efficient and effective in identifying PPE with 

mAP of 95.6%. 

While previous research employing models like YOLOv3, 

YOLOv5, and custom YOLOv8-Medium has shown promising 

results in PPE detection, these models often present limitations 

in terms of computational demands, making them less feasible 

for deployment on resource-constrained devices. However, the 

recent advancements in lightweight object detection models, 

specifically YOLOv8-Nano and YOLOv9-Tiny, offer 

significant potential due to their optimized architecture, 

reduced computational complexity, and real-time processing 

capabilities. Despite their theoretical advantages, there remains 

a critical gap in empirical evaluations comparing their 

performance in real-world PPE detection scenarios. Given that 

real-time PPE monitoring is crucial for preventing workplace 

accidents and ensuring worker compliance, it is essential to 

evaluate whether these models can provide both high detection 

accuracy and real-time processing speed without requiring 

expensive hardware. 

Thus, the primary objective of this study is to conduct a 

comprehensive evaluation of these two lightweight object 

detection models, YOLOv8-Nano and YOLOv9-Tiny, in the 

context of real-time personal protective equipment detection 

within construction sites. The key contributions of this study 

are: 

A. Investigate the performance of YOLOv8-Nano and 

YOLOv9-Tiny models for the detection of personal 

protective equipment in construction sites. 

B. Analyze the trade-off between accuracy and 

computational efficiency of the two models to identify the 

most suitable model for real-time PPE detection in 

construction sites. 

C. Provide practical insights and recommendations for 

deploying lightweight object detection models in 

construction site safety monitoring, contributing to the 

advancement of cost-effective, AI-driven workplace 

safety solutions. 

II. MATERIALS AND METHODS 

This research was carried out at Universitas Internasional 

Batam. To pursue the objectives of this research study, the 

following methodological steps were implemented: 

 

Figure 1. Research Flow 

2.1 Datasets 

To reach the objectives of this study, a custom dataset 

was collected from Kaggle to train and evaluate the PPE 

detection model which can be accessed at the following 

link: 

https://www.kaggle.com/datasets/snehilsanyal/constr

uction-site-safety-image-dataset-roboflow  

 

 
Figure 2. Datasets example 

The selection of the dataset for this study was driven 

by the need for a realistic and diverse representation of PPE 

usage in construction environments. Since construction 

sites present varied lighting conditions, worker postures, 

occlusions, and PPE variations, it is essential to use a 

dataset that captures these challenges to ensure model 

robustness in real-world scenarios. The dataset consists of 

2,801 images with bounding box annotations for various 

PPE items, split into train and valid sets in the ratio of 

70:30 respectively. Specific requirements were used to 

ensure the model's resilience in practical applications. 

Factors such as the number of classes, object angles and 

distances, people's motions, and associated construction 

backgrounds were considered. The dataset consists of ten 

classes, including Hardhats, No-Hardhats, Mask, No-

Mask, Safety Vest, No-Safety Vest, Person, Safety Cone, 

Machinery, and Vehicle. 

 

2.2 YOLO Architecture 

The YOLOv8-Nano and YOLOv9-Tiny models were 

selected for this study due to their lightweight architecture 

and proven effectiveness in real-time object detection 

https://www.kaggle.com/datasets/snehilsanyal/construction-site-safety-image-dataset-roboflow
https://www.kaggle.com/datasets/snehilsanyal/construction-site-safety-image-dataset-roboflow
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applications [20]. Both models are designed to be 

computationally efficient and high-performing, making 

them suitable for real-time deployment on resource-

constrained devices. The YOLOv8 architecture represents 

the latest iteration of the YOLO series, incorporating key 

innovations such as the CSPNet backbone, FPN+PAN 

neck, and anchor-free detection [21]. The YOLOv9 model 

is the newest addition to the YOLO family and provides a 

significant advancement in real-time object detection 

because of the adoption of cutting-edge techniques such as 

the Generalized Efficient Layer Aggregation Network 

(GELAN) and Programmable Gradient Information (PGI). 

Designed to further enhance efficiency and accuracy 

compared to previous versions [20]. 

The YOLOv8 model, as depicted in Figure 3, employs 

the Darknet53 architecture as its backbone network, while 

the head utilizes PAFPN for feature aggregation. 

Furthermore, the detection head is designed using an 

anchor-free approach, which reduces the number of 

bounding box predictions. This, in turn, accelerates the 

execution of the Non-Maximum Suppression, a 

computationally intensive post-processing step necessary 

to filter out candidate detections following the inference 

process. 
 

 
 

Figure 3. YOLOv8 Architecture [22] 

As depicted in Figure 4, the YOLOv9 model has three 

main components: a primary branch, an auxiliary reversible 

branch, and multi-level auxiliary information. The auxiliary 

branch addresses information bottlenecks in the primary 

branch and can be used in simpler network architectures 

without increasing computational costs during inference. 

The multi-level auxiliary information helps reduce training 

errors. YOLOv9 combines the Programmable Gradient 

Information concept with the Generalized Efficient Layer 

Aggregation Network, a hybrid of CSPNet and ELAN. This 

integration produces a lightweight architecture with 

competitive speed and accuracy. 

 
 

Figure 4. YOLOv9 Architecture [23] 
 

2.3 Model Training Procedure 

Both models were trained using the dataset of 2,801 

images across the ten PPE classes. The images in dataset 

were resized to 640×640 pixel and subjected to a number 

of other data augmentation techniques such as random 

scaling, rotation, color jittering, in order to make the 

models more robust and by generalization. Training was 

done using YOLOv8-Nano and YOLOv9-Tiny with the 

training batch size of 16 and learning rate of 0.01 for 200 

epochs. The training was performed on a system equipped 

with an NVIDIA RTX 3070 GPU. 
 

2.4 Evaluation Metrics 

To evaluate the performance of the YOLOv8-Nano 

and YOLOv9-Tiny models, the following assessment 

metrics were employed: 

a. F1 Score: The F1 score is a metric that combines 

precision and recall, using the harmonic mean. The 

F1 Confidence Curve depicts the F1 score across 

various confidence levels, and a higher F1 score 

indicates enhanced model performance, with the 

optimal prediction threshold corresponding to the 

maximum F1 score. 

 𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(1) 

b. Precision: Precision evaluates the quality of the 

results, calculated as the ratio of True Positives to all 

positive detections, including True and False 

Positives. A low False Positive rate suggests high 

precision. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

=
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (2) 

c. Recall: Recall reflects the model's ability to locate all 

relevant occurrences, in this case, all the PPE items 

in the scenes. It is defined as the ratio of True 

Positives to all actual positive instances. A high recall 

rate implies a low false negative rate for the model. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 
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d. mAP50: mAP50 assesses the precision and recall 

when the Intersection over Union threshold reaches 

50%. This metric is widely used in object detection 

tasks, as it indicates how well the model can locate 

and identify items in images. A higher mAP50 score 

suggests the model's improved ability to identify and 

localize items with at least 50% overlap with the 

ground truth. 

 𝑚𝐴𝑃 =  
1

𝑛
∑

𝑘=𝑛

𝑘=1
𝐴𝑃𝐾 (4) 

Where APK is the Average Precision (AP) of 

class k and n is the number of classes. 

e. mAP50-95: mAP50-95 evaluates the precision and 

recall across a range of IoU thresholds, from 50% to 

95%, in steps of 5%. This provides a more 

comprehensive assessment of the model's 

performance, considering its capacity to identify 

items with varying degrees of similarity to the ground 

truth. A higher mAP50-95 score indicates greater 

overall detection performance across different IoU 

thresholds. 

f. Confusion Matrix: Confusion Matrix is a tool that 

provides a visual representation of the model's 

classification performance, depicting the True 

Positive, False Positive, True Negative, and False 

Negative rates for each class. This matrix enables the 

identification of specific classes where the model 

excels or encounters challenges, thereby facilitating 

targeted refinements and enhancements. 

III.  RESULT AND DISCUSSION 

The YOLOv8-Nano and YOLOv9-Tiny models were trained 

for 200 epochs to evaluate their performance in detecting 

personal protective equipment. The YOLOv8-Nano model 

completed training in 1.24 hours, utilizing an architecture with 

186 layers and 2,686,318 parameters. In contrast, the YOLOv9-

Tiny model required a longer training time of 2.24 hours, 

reflecting its more complex architecture with 504 layers, 

although it maintained a lighter design with only 1,731,774 

parameters. 

 
 

Figure 5. YOLOv8-Nano prediction result 

 

 
 

Figure 6. YOLOv9-Tiny prediction result 

These differences highlight the trade-off between model 

complexity and parameter size, which can influence both 

training efficiency and model performance. More detailed 

explanation is as follows: 

A. F1 Score 

As shown in Table 1, the F1 scores for the YOLOv8-

Nano and YOLOv9-Tiny models demonstrate a minor 

discrepancy in their performance. The YOLOv8-Nano 

model achieved an F1 score of 0.81 at a confidence 

threshold of 0.464, while the YOLOv9-Tiny model 

attained a marginally higher F1 score of 0.82 at a lower 

threshold of 0.431. 

Table 1. F1-Confidence Score Comparison 

Model F1 Score 

YOLOv8-Nano 0.81 at threshold 0.464 

YOLOv9-Tiny 0.82 at threshold 0.431 

 
This threshold represents the minimum level of 

confidence required for a detection to be deemed valid. 

The comparative analysis indicates that the YOLOv9-

Tiny model exhibits a slight advantage over the 

YOLOv8-Nano model in terms of the F1 score. 

Furthermore, the lower confidence threshold for the 

YOLOv9-Tiny model suggests that it requires less 

certainty to achieve comparable or superior detection 

results, rendering it slightly more effective in identifying 

objects under the same conditions. 

This slight advantage in F1 score and lower 

confidence threshold has important real-world 

implications. A model that can detect PPE with higher 

reliability at a lower confidence threshold is beneficial. 

The YOLOv9-Tiny model’s ability to make confident 

detections with a lower threshold means that it is more 

sensitive to detecting PPE. Additionally, the lower 

threshold implies that YOLOv9-Tiny is capable of 

identifying PPE even in less-than-ideal conditions, such 

as low lighting, occlusions, or varying camera angles, 

which are common in real-world construction sites. 
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B. Precision and Recall 

According to the results summarized in Table 2, the 

precision and recall metrics for the YOLOv8-Nano and 

YOLOv9-Tiny models exhibit a modest difference in 

their performance. While the YOLOv8-Nano model 

achieved a precision of 89.69% and a recall of 74.86, the 

YOLOv9-Tiny model demonstrated a slightly enhanced 

performance, with a precision of 90.24% and a recall of 

75.21%. 

Table 2. Precision Comparison 

Model Precision Recall 

YOLOv8-Nano 89.69 74.86 

YOLOv9-Tiny 90.24 75.21 

 
This comparative analysis suggests that the YOLOv9-

Tiny model offers a marginal advantage over the 

YOLOv8-Nano model in terms of both precision and 

recall. The higher precision observed in the YOLOv9-

Tiny model implies an improved capability to accurately 

identify true positive detections, and its slightly elevated 

recall indicates a better ability to retrieve relevant 

objects. Despite these minor differences, the overall 

performance of both models is comparable, with the 

YOLOv9-Tiny model exhibiting a slight edge under the 

same evaluation conditions. 

These findings have notable real-world implications. 

The higher precision of YOLOv9-Tiny means that it is 

less likely to generate false positives, reducing 

unnecessary alerts or interventions when detecting PPE 

compliance. This is especially valuable in environments 

where false alarms could disrupt workflow efficiency. 

Additionally, the slightly higher recall of YOLOv9-

Tiny indicates that it is better at detecting PPE instances 

even in challenging conditions, such as partially 

obstructed views, varying lighting conditions, or 

different PPE colors and materials. This reduces the risk 

of false negatives, where a worker failing to wear proper 

PPE might go unnoticed, thereby improving workplace 

safety and regulatory compliance. 

C. Mean Average Precision (mAP) 

Table 3 shows a comparison of the mean average 

precision (mAP) scores for the YOLOv8-Nano and 

YOLOv9-Tiny models at different Intersection over 

Union thresholds. For the mAP50 metric, which 

evaluates precision and recall when the IoU threshold is 

set at 50%, the YOLOv8-Nano model scored 81.48, 

while the YOLOv9-Tiny model achieved a slightly 

higher score of 82.70. Similarly, for the mAP50-95 

metric, which considers the average precision across IoU 

thresholds ranging from 50% to 95% in steps of 5%, the 

YOLOv8-Nano model scored 53.52, and the YOLOv9-

Tiny model scored 54.82, indicating a marginal 

improvement in the overall detection performance of the 

YOLOv9-Tiny model. 

Table 3. mAP50 and mAP50-95 Comparison 

Model mAP50 mAP50-95 

YOLOv8-Nano 81.48 53.52 

YOLOv9-Tiny 82.70 54.82 

 

This marginal improvement suggests that YOLOv9-

Tiny is slightly more reliable in detecting PPE across 

varying IoU thresholds, making it a preferable choice 

when higher detection accuracy is required. However, 

while the improvement in mAP is evident, the trade-off 

between accuracy and computational efficiency must be 

considered when selecting a model for real-world 

deployment. 

In practical applications, a model with higher 

detection precision, like YOLOv9-Tiny, can reduce the 

likelihood of PPE non-compliance going unnoticed, 

thereby helping safety managers enforce regulations 

more effectively. This can lead to a lower incidence of 

workplace injuries, improving overall safety compliance. 

Furthermore, in environments where real-time 

processing and low-latency responses are required, such 

as automated monitoring systems on edge devices, the 

slight computational efficiency trade-off of YOLOv9-

Tiny must be weighed against its benefits. While 

YOLOv8-Nano remains a viable option for power-

constrained devices, the enhanced accuracy of YOLOv9-

Tiny might be preferable in high-risk environments 

where missing a PPE violation could result in severe 

consequences. 

D. Confusion Matrix 

Figure 7 shows the confusion matrices for each class 

for the YOLOv8-Nano and Figure 8 the confusion 

matrices for the YOLOv9-Tiny model. Diagonal 

elements of the matrices, which correspond to the 

True Positive rates, were analyzed to observe that the 

YOLOv9-Tiny model has slightly higher True Positive 

rates for most classes than that of the YOLOv8-Nano 

model. Additionally, the confusion matrix of the 

YOLOv9-Tiny model seems to show the lower False 

Positive rate as indicated by the other smaller elements 

in off-diagonal. 
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Figure 7. Confusion Matrix for YOLOv8-Nano 

 
Figure 8. Confusion Matrix for YOLOv9-Tiny 

 

The results show that the YOLOv9-Tiny model has 

higher detection efficiency. The high True Positive rates 

in all categories demonstrate that YOLOv9-Tiny has 

better efficiency in correctly identifying personal 

protective equipment objects, thus minimizing the 

chance for missed detections. This improvement 

becomes significant when assessing danger zones like 

the work site on a building under construction. 

The superior performance of YOLOv9-Tiny can be 

attributed to several key architectural enhancements. 

First, the model incorporates an improved feature 

pyramid network (FPN) and path aggregation network 

(PAN), which enhances multi-scale feature extraction, 

allowing better detection of small PPE objects in 

complex environments. Second, the use of a dynamic 

convolution mechanism helps the model focus on more 

relevant spatial features, improving precision while 

maintaining computational efficiency. Third, 

advancements in anchor-free detection strategies in 

YOLOv9-Tiny reduce the dependency on predefined 

anchor boxes, allowing for more flexible and accurate 

bounding box predictions. These technical 

improvements collectively contribute to the YOLOv9-

Tiny model's higher accuracy, making it a better choice 

for real-world PPE detection applications where both 

speed and precision are critical. 

IV. CONCLUSION 

YOLOv8-Nano was trained in just 1.24 hours, utilizing 186 

layers and 2,686,318 parameters, making it a highly lightweight 

model in terms of training time and computational efficiency. 

Despite its relatively simple architecture, YOLOv8-Nano 

achieved high precision and recall, demonstrating its capability 

to effectively detect PPE while maintaining fast inference 

speed. These characteristics make it an excellent choice for 

applications requiring rapid deployment and real-time 

processing, especially in resource-constrained environments 

such as edge devices or embedded systems. 

In contrast, YOLOv9-Tiny required 2.24 hours of training 

and consists of 504 layers with 1,731,774 parameters—a deeper 

and more complex structure designed to handle intricate feature 

representations within the dataset. While this increased 

complexity resulted in a longer training time, it ultimately led 

to slight improvements in precision, recall, and mAP scores, 

proving that deeper architectures and additional computational 

resources contribute to enhanced recognition accuracy. This 

suggests that YOLOv9-Tiny is better suited for applications 

where detection accuracy is prioritized over training speed, 

such as high-risk construction sites or industrial safety 

monitoring, where precise PPE detection is critical for 

regulatory compliance and worker safety. 

Overall, both models present viable solutions for PPE 

detection in construction environments, but the choice between 

YOLOv8-Nano and YOLOv9-Tiny should be driven by 

deployment-specific priorities. If fast training and lower 

computational cost are critical, YOLOv8-Nano is the preferred 

option. However, if higher detection accuracy and robustness 

are required, YOLOv9-Tiny is the better alternative. Future 

research could explore further optimizations, such as model 

quantization, knowledge distillation, or hardware acceleration, 

to improve efficiency while maintaining or even enhancing 

detection performance in real-world applications. 

V. SUGGESTION 

Based on the comparative analysis of YOLOv8-Nano and 

YOLOv9-Tiny, the latter demonstrates a slight but consistent 

advantage across various evaluation metrics, including F1 

score, precision, recall, mAP50, and mAP50-95. While 

YOLOv9-Tiny requires a higher number of parameters and 

deeper architecture, its superior detection accuracy suggests 

that the added complexity contributes to better feature 

extraction and object recognition. 

Future research could explore other lightweight 

architectures, such as MobileNet, GhostNet, or ShuffleNet, to 

determine whether alternative models can provide a better 

balance between detection accuracy and computational 

efficiency. Furthermore, optimization techniques such as 

knowledge distillation, pruning, and quantization could be 

employed to enhance model efficiency while minimizing 

performance trade-offs. Knowledge distillation, for instance, 

could enable a more compact model to inherit the predictive 

power of a larger one, whereas quantization could significantly 

reduce model size without substantial loss of accuracy. 

Additionally, expanding the dataset to include a wider 

variety of PPE types—such as ear protection, respiratory 

masks, and high-visibility armbands—along with diverse 
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environmental conditions (e.g., varying lighting, occlusions, 

and camera angles) could further improve the generalizability 

of the models in real-world scenarios. Conducting real-time 

deployment evaluations in actual construction sites would also 

provide valuable insights into the practical challenges and 

limitations of implementing computer vision-based PPE 

adherence monitoring systems 
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