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This study addresses the critical problem of identifying optimal business 

locations for small and medium enterprises (SMEs), a decision-making 

process by factors such as travel time uncertainty, natural disasters, and 

population density. Existing research in this area has not adequately 

addressed these complexities, leaving a knowledge gap that this study aims 

to fill. Our research employs two optimization methods, differential evolu-

tion (DE) and mixed integer programming (MIP), to maximize customer 

coverage. We present a comprehensive model that not only determines 

optimum and near-optimum business locations but also investigates the 

scalability of the algorithms with increasing facilities and their adaptability 

to different traffic scenarios. Key findings indicate that the DE algorithm, in 

particular, demonstrates superior coverage performance. This study 

contributes to the field by providing a robust and adaptable model for facility 

location problem-solving. The insights gained have practical applications 

for both academia and industry, aiding SMEs in making informed, strategic 

decisions about business location placement. 
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1. INTRODUCTION 

Strategic location selection is a critical 

determinant of success for Small and Medium 

Enterprises (SMEs) [1]–[3]. A well-chosen loca-

tion can enhance business visibility, facilitate 

customer access, and positively impact operational 

costs [4], [5]. However, identifying the optimal 

business location is a complex endeavor, influ-

enced by a multitude of factors, including travel 

time uncertainty [6]–[8], natural disasters [9]–[11], 

and population density [12]–[14]. 

Travel time uncertainty, characterized by 

factors such as traffic congestion, road conditions, 

and distance, significantly influences customer 

behavior, potentially leading customers to seek 

alternatives if they perceive the journey to a 

business as challenging or time-consuming [15], 

[16]. It highlights the importance of location 

selection for SMEs, prioritizing easy accessibility 

and reliable transportation routes. Research 

supports this, with studies by Berman et al. [6] 

examining the impact of traffic variations and 

special events on facility location, Johansson et al. 

[7] exploring the effects of uncertainty on vehicle 
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platooning benefits, and Chen et al. [8] introducing 

a framework for evaluating urban accessibility that 

incorporates the reliability of travel times. 

Natural disasters, such as floods, earthquakes, 

and storms, threaten SMEs by jeopardizing 

physical assets, disrupting operations, and poten-

tially causing financial losses that could lead to 

temporary or permanent closure. Existing research 

acknowledges this risk. Ma et al. [9] emphasize the 

importance of strategic site selection for shelters, 

highlighting the need to incorporate uncertainty 

into disaster models. Additionally, other studies 

explore frameworks for disaster management and 

risk reduction, further emphasizing the need for 

SMEs to consider natural disaster risk during 

location selection [10], [11]. 

Population density, a measure of inhabitants 

per area, significantly influences business location 

decisions for SMEs.  Densely populated regions 

offer a double-edged sword: a broader potential 

customer base, potentially leading to higher profits 

[12], but also intensified competition from other 

businesses [13], [14]. It highlights the importance 

of considering population density alongside other 

factors when selecting a strategic location. 

This study addresses a research gap in 

understanding the combined influence of travel 

time uncertainty, natural disasters, and population 

density on the strategic location decisions of SMEs. 

It proposes a comprehensive model integrating 

these factors to assist SMEs in identifying optimal 

business locations. The novelty lies in its approach, 

incorporating linear programming (LP) and Meta-

heuristics. LP ensures an optimal solution but can 

be time-consuming, while metaheuristics provide a 

quicker, feasible solution.  

This research is crucial as it offers SMEs a 

robust decision-making tool that considers multiple 

real-world factors, enhancing their strategic 

planning capabilities. SMEs can improve their 

operational efficiency, customer reach, and overall 

competitiveness by optimizing location decisions. 

Furthermore, the insights from this study could 

inform policy-making in support of SMEs, 

contributing to economic development and 

resilience in the face of uncertainties. 

This study is structured in the following way: 

Section 2 explains research methods. The result and 

discussion are outlined in Section 3. Finally, 

Section 4 concludes the research 

  

2. RESEARCH METHODS 

This section will delve into the details of the 

proposed methodology. Fig. 1 illustrates the 

proposed methodology aimed at aiding SMEs in 

pinpointing the optimal business location. 
 

2.1. Model formulation 

Expected coverage problem (ECP) for facility 

location planning 

The primary objective of the ECP model is to 

maximize the expected coverage of each demand 

point, taking into account the probability of each 

scenario [6]. In practical business applications, the 

theory of the coverage problem for facility loca-

tion planning plays a crucial role. For instance, a 

retail business might leverage this model to 

strategically place its stores in a city, aiming to 

select locations that are easily accessible to a 

majority of its potential customers, thereby maxi-

mizing sales potential. Similarly, a logistics 

company might utilize this model to optimize the 

placement of its warehouses to minimize trans-

portation costs and delivery times. 
 

 

Fig. 1. The proposed approach 

 

Formally, consider m facilities with coverage 

time T that need to be located on a directed 

network G(N, A) with a set of nodes N(|N | = n), 

each node i ∈ N having a weight Wi, and a set of 

links A(|A| = a). We will use e ∈ G to represent a 

point that is either a node of G or belongs to the 

interior of some link. S scenarios represent the 

network uncertainty; we let lk
ij be the travel time 

of link (i, j) in scenario k, where the link travel 

times for each scenario are assumed to be 

monotone, increasing the travel distance. For 

points e, f ∈ G, we let tk
ef be the shortest travel time 

from e to f under scenario k. Facilities can be 

located at nodes or anywhere on links. Let X ⊂ G 

be a location vector of m open facilities. Define 

Nk
X = {i| minx∈X tk

ix ≤ T} as the set of nodes covered 

in scenario k by facilities in X, where T is the pre-

defined time standard. Table I displays the 
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notation of ECP. Then, ECP can be formulated as 

follows: 

1 1

maximize 
n S

i k ik

i k

z W P y
 

  (1) 

 1

         for all 1,..., ; 

                               1,...,

n

ik j kij

j

y x I i n

k S



 




 (2) 

 
1

n

j

j

x m


  (3) 

 (0,1)               for all 1,...,jx j n   (4) 

 
(0,1)              for all 1,..., ;

                                         1,...,

iky i n

k S

 


    (5) 

In this formulation, Ikij is a binary decision 

variable that equals 1 if a business facility located 

at critical point j covers node i in scenario k, and 0 

otherwise. Essentially, it indicates whether a 

facility at a specific location can provide service 

to a particular demand point within the coverage 

time under the travel time conditions of a given 

scenario. 

The binary decision variables xj = 1 if a 

facility is located at critical point j and yik = 1 if 

node i is covered by some facility in scenario k. 

The objective function (1) is to maximise the 

expected coverage of the demand point by 

considering the probability of each scenario. 

Constraint (2) ensures that the demand point i will 

be covered by any facility at j in scenario k. 

Constraint (3) ensures that the number of facilities 

is limited to m. Constraints (4)-(5) are binary 

decision-making. 

However, the mathematical model presented 

faces a challenge due to the non-linearity 

introduced by multiplying decision variables xj 

and Ikij in Constraint (2). Linear models require 

variables to appear independently, not multiplied. 

To address the issue of non-linearity, an 

additional decision variable is introduced. For 

instance, a new variable zijk represents the product 

of xj and Ikij. Consequently, constraint 2 can be 

rewritten as follows: 
 

1

 for all 1, ,  

                    and 1, ,

n

ik ijk

j
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k S
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 


 (6) 

 

This transformation ensures linearity because 

zijk simply reflects the product of the original 

variables without introducing additional multi-

plications. Essentially, zijk acts as a switch, being 1 

only when both xj and Ikij are 1 and 0; otherwise, 

preserving the original constraint's intent in a 

linear form. 

The introduction of an additional decision 

variable zijk necessitates the inclusion of several 

supplementary constraints to ensure consistency 

between zijk, xj, and Ikij. These additional 

constraints are as follows: 
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Constraints (7) and (8) ensure that zijk cannot be 

1 unless both xj, and Ikij are 1. Constraints (9) 

ensures that if both xj and Ikij are 1, then zijk must 

be 1. Thus, zijk now represents the product of xj and 

Ikij, but without rendering the model non-linear.  

 

Population density and disaster-free locations 

Two parameters are introduced to enhance the 

ECP model for selecting optimal SME locations. 

Di represents population density at each location, 

with higher values receiving more weight due to a 

larger potential customer base. These density 

values are normalized (scaled between 0 and 1) 

using Equation (11) to prevent bias and facilitate 

interpretation. Normalization ensures all locations 

contribute equally regardless of their original 

density.  

Conversely, Bj is a binary parameter indicating 

whether a location is free from natural disasters (1) 

or not (0). It ensures facilities are only placed in 

safe areas, mitigating business assets and 

operations risks. 
 

'

max( )

i
i

D
D

D
  (11) 

 

These modifications make the mathematical 

model more comprehensive and realistic for real-
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world applications. It now considers both 

population density and disaster risk in determining 

the optimal locations for facilities. Below is the 

updated LP of the coverage problem: 

'

1 1

maximize 
n S

i i k ik

i k

z DW P y
 

  (12) 

Constraints (6)-(10) 

Constraints (3)-(5) 

 

Assumptions of the developed ECP model 

The developed ECP model incorporates 

several key features to address real-world 

complexities for SMEs. First, it acknowledges the 

uncertainty of travel times by considering various 

scenarios (e.g., regular traffic, congestion) and 

their likelihood of occurrence. It ensures that the 

chosen location remains accessible under different 

conditions.  
 

Table 1. Notation 
 

m : Number of business facilities 

T : 
Coverage time for the business 

facilities 

G(N, 

A) 
: 

Directed network with a set of 

nodes N and a set of links A 

n : Number of nodes in the network 

a : Number of links in the network 

e : 

A point that is either a node of G 

or belongs to the interior of some 

link 

S : 
Number of scenarios representing 

network uncertainty 

tk
ef : 

Shortest travel time from point e 

to point f under scenario k 

X : 
Location vector of m open 

facilities 

Nk
X : 

Set of nodes covered in scenario k 

by facilities in X 

Di : Population density at node i 

Bj : 

Binary parameter indicating if 

location j is free from natural 

disasters 

Ikij : 

Binary parameter indicating if a 

facility located at critical point j 

covers node i in scenario k 

xj : 

Binary decision variable 

indicating if a business facility is 

located at critical point j 

yik : 

Binary decision variable 

indicating if node i is covered by 

some facility in scenario k 

Second, the model offers flexibility in 

location selection. Businesses are not restricted to 

specific points but can be situated anywhere along 

network links, allowing for strategic placement 

within a broader area. Finally, the model goes 

beyond traditional approaches by considering both 

population density and disaster risk as crucial 

factors influencing optimal location selection. 

The modified ECP model with Di and Bj is 

transformed into a mixed integer programming 

(MIP) problem to achieve a more precise 

representation of the problem. MIP allows for both 

continuous and integer variables, making it 

suitable for facility location planning [17]. This 

formulated problem is then solved using a 

powerful solver like Gurobi, which is known for 

efficiently handling large-scale optimization. By 

comparing the MIP solution with results from 

metaheuristic methods, the study aims to identify 

the most effective approach for pinpointing the 

optimal location for SMEs. 
 

2.2. Algorithm development 

This study leverages a metaheuristic 

approach called differential evolution (DE) for 

solving the complex facility location problem. 

Metaheuristics provide general frameworks for 

developing algorithms to tackle challenging 

optimization issues [18], [19]. They are parti-

cularly useful when traditional methods struggle, 

offering good solutions within reasonable time 

frames [18]. 

DE, known for its simplicity and effecti-

veness, is a popular choice for complex optimi-

zation problems [20]. It utilizes a population-

based approach, starting with a set of potential 

solutions and iteratively improving them by 

incorporating variations from randomly chosen 

members within the population. It enables DE to 

explore the solution space effectively and 

converge towards the optimal location.  

The selection of DE over other algorithms 

like genetic algorithm (GA) or particle swarm 

optimization (PSO) is due to several factors. 

Firstly, DE excels at handling non-linear and 

multimodal functions, which are common in 

facility location problems [21]–[23]. Secondly, 

DE requires fewer control parameters compared to 

GA and PSO, making it easier to implement [23], 

[24]. Finally, studies have shown that DE can 

achieve better solutions with less computational 

effort [25]. 
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While DE is typically used for continuous 

problems, it can be adapted for discrete problems 

like facility location selection through discre-

tization [26]. This process transforms the conti-

nuous solution space generated by DE into a 

discrete space with relevant options for facility 

placement [27]. This adaptation allows DE to 

effectively address the complexities involved in 

selecting optimal locations for SMEs. 

The DE algorithm, as applied to the modified 

ECP model, involves a discretization process to 

handle the problem's discrete nature. Here is the 

algorithm where P is the population of potential 

solutions, X, A, B, C are vectors in P, D is the 

donor vector, U is the trial vector, F is a scaling 

factor for mutation. The modified ECP model's 

objective function determines a solution's fitness. 

The DE algorithm employed in this study 

tackles the facility location problem through an 

iterative process. It starts by initializing a 

population of random solutions, each representing 

a potential configuration of facility placements. 

The algorithm then iterates until a stopping 

criterion is reached, such as a maximum number 

of iterations or achieving a high percentage (e.g., 

95%) of the maximum possible demand coverage. 

Within each iteration, the DE algorithm 

works on individual solutions in the population. It 

randomly selects three solutions and creates a new 

solution by combining them with variations. It 

injects diversity into the population. Next, using a   

thresholding technique, the algorithm transforms 

this continuous solution into a discrete one suit-

able for facility location selection. 

The resulting solution is evaluated for feasi-

bility (adherence to constraints) and effectiveness 

in covering demand points. If this new solution 

proves superior to the existing one, it replaces the 

older solution in the population. Finally, upon 

reaching the termination condition, the algorithm 

returns the best discrete solution identified as the 

optimal location for the SME. 

 

2.3. Data collection 

The data collection process for the modified 

ECP model involved collecting facility location 

and demand point information, including 

geographical coordinates, as shown in Table 2, 

over a period of four days. All the required data 

was readily available, so data collection did not 

take too long.  

Ideally collected under non-congested 

conditions, travel time data is obtained from 

sources like Google Maps to ensure its reliability. 

This data is used to assess the accessibility of 

potential facility locations. The Google Maps API 

is used for geocoding and finding travel time, 

converting place names into precise geographical 

coordinates and calculating optimal routes 

between locations respectively. Table 3 displays 

the results of the travel time finding using Google 

Maps API. 
 

Table 2. The snippet of geographical coordinates 
 

Location Latitude Longitude 

Cengkareng Barat -6.1398647 106.7238102 

Cengkareng Timur -6.1409572 106.7353678 

Duri Kosambi -6.1704014 106.7201486 

Kapuk -6.1391425 106.7522077 

Jelambar Baru -6.1487012 106.7869928 
 

Table 3. The snippet of travel time data 
 

Location Cengkareng 

Barat 

Cengkareng 

Timur 

Cengkareng 

Barat 
0 1.541935 

Cengkareng 

Timur 
1.541935 0 

 

The demand at each location is determined 

from the SMEs' sales data, reflecting the sales 

volume or demand at each location. The weight of 

demand at each location, Wi, is calculated by 

normalizing the sales volume, Ci, at each location 

by the total demand, as shown in Equation (13). 

Table 4 displays the snippet of demand data. 
 

1

i
i n

j

j

C
W

C





 (13) 

 

Table 4. The snippet of demand data 
 

Demand Weight 

15 0.00436 

15 0.00436 

16 0.004651 

31 0.009012 

 

Population density data at each demand point 

or region is collected from sources like population 

censuses or government data to ensure reliability. 

This data, comprising the number of individuals in 

each region (Pi) and area measurements (Ai), is 
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used to calculate population density, as shown in 

Equation (14) [28], [29]. The calculated popula-

tion density is then used in the model's objective 

function to weigh the importance of covering each 

demand point. Table 5 displays the snippet of 

density data. 

 

 i
i

i

P
D

A
  (14) 

Table 5. The snippet of density data 
 

Location 
Population 

(inhabitants) 

Area 

(km2) 

Density 

(inhabitants/km2) 

Cengkareng 

Barat 

74,922 3.61 20,754 

Cengkareng 

Timur 

90,832 4.51 20,140 

Duri 

Kosambi 

86,358 5.91 20,754 

Kapuk 154,813 5.63 27,498 

 

Then, information about the risk of natural 

disasters at each potential facility location is also 

collected. This binary parameter indicates whether 

a location is free from natural disasters. Data on 

flood zones, for instance, can be obtained from 

government sources, such as the provincial 

government of Jakarta, to identify locations free 

from the risk of flooding [30]. Table 6 displays the 

snippet of prone-disaster data. 
 

Table 6. The snippet of prone-disaster data 
 

Location Status 

Cengkareng Barat 1 

Cengkareng Timur 1 

Duri Kosambi 1 

Kapuk 1 

Kedaung Kali Angke 0 

Rawa Buaya 1 

 

The study incorporates four scenarios, each 

with a distinct probability and impact on travel 

times. The 'Typical Scenario' (Probability = 0.5) 

represents normal conditions with no floods and 

shortest travel times. The 'Light Congestion' 

scenario (Probability = 0.2) accounts for light 

traffic, leading to a 10% increase in travel times. 

The 'Moderate Congestion' scenario (Probability = 

0.2) assumes moderate traffic, resulting in a 25% 

increase in travel times. Lastly, the 'Extreme 

Scenario' (Probability = 0.1) considers severe 

floods, causing a substantial 50% increase in 

travel times. These scenarios ensure that the model 

provides a robust solution under various 

conditions, including extreme flood scenarios. 
 

2.4. Comparison of LP and metaheuristics 

In the context of the modified ECP model, the 

comparative analysis between LP and the 

metaheuristic method, DE, hinges on two pivotal 

aspects, the coverage value (fitness function) and 

processing time. A higher coverage value 

indicates a more desirable or optimal solution. At 

the same time, a shorter processing time is 

generally preferred as it indicates that the 

algorithm can find a solution more quickly, which 

is particularly important in real-time or time-

sensitive applications. 

 

2.5. Case study application 

A case study at a Jakarta bakery aimed to 

maximize demand coverage across 261 sub-

districts by opening up to five branches, avoiding 

flood-prone areas. Travel times were determined 

using Google Maps during non-congested periods, 

with a travel time coverage set at 10 minutes. 

Programs using the DE algorithm and MIP were 

developed, with inputs including facility loca-

tions, demand point information, demand weights, 

population density data, natural disaster-free 

locations, and travel time data.  

The evaluation of the algorithms is based on 

two benchmarks: coverage level, also known as 

the fitness function and processing time. These 

benchmarks provide a robust measure of the 

effectiveness and efficiency of the algorithms. The 

parameters for the study are systematically varied. 

The number of facilities was adjusted from 1 to 5, 

and four scenarios with different probabilities 

were considered. In the sensitivity analysis, these 

probabilities were adjusted to more extreme 

values to test the robustness of the algorithms. 

The termination criteria for the algorithms 

were carefully chosen. The MIP algorithm stops 

when it finds the optimal solution, while the DE 

algorithm stops when the best fitness reaches at 

least 95% of the maximum possible demand 

coverage. These criteria ensure that the algorithms 

stop when a satisfactory solution is found, 

optimizing computational resources. 

Finally, the study included two sets of trials. 

The first set was a standard test, and the second set 

was a sensitivity analysis. In each trial, the DE 

algorithm was run 30 times, and the results were 

compared with the output of the MIP program, 

which was run once due to its deterministic nature. 
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This approach ensures a thorough and rigorous 

evaluation of the algorithms, providing reliable 

and statistically valid results. 

The programs' expected output is the optimal 

facility locations, assisting SMEs in strategic 

location decisions. Experiments were conducted 

on a desktop PC with an AMD Ryzen 5 5500U 

CPU and six physical cores, with specific 

parameters for the DE and an optimality tolerance 

of 1e-7 for the MIP solver. 

 

3. RESULTS AND DISCUSSION 

3.1. Results of computation 

Table 7 provides a comparative performance 

analysis between the DE algorithm and MIP for a 

facility location problem, considering the number 

of facilities (m), coverage, and processing time. 

Coverage measures the proportion of demand met 

by the facilities. DE provides average, maximum, 

and minimum coverage values, while MIP, a 

deterministic method, provides a single coverage 

value. 

As the number of facilities increases, both DE 

and MIP algorithms improve their coverage. 

However, DE consistently achieves higher 

coverage at the cost of longer processing times, 

particularly due to its termination condition that 

stops the algorithm when the best fitness reaches 

at least 95% of the maximum possible demand 

coverage. On the other hand, MIP systematically 

seeks an optimal solution and stops when it has 

either found the optimal solution or exhausted the 

solution space.  

The DE algorithm's performance in finding 

the best coverage or fitness value improves 

consistently as m increases from 1 to 5 (Fig. 2). 

Each increment in m leads to rapid convergence 

towards the optimal solution initially, followed by 

plateaus indicating the algorithm has likely 

converged to a near-optimal solution. The pattern 

of rapid improvement followed by plateaus as m 

increases underscores the robustness and effi-

ciency of the DE algorithm in solving the facility 

location problem across different m values. 

Table 8 presents a comparative analysis of 

the coverage achieved by the DE and MIP 

algorithms under different traffic scenarios and for 

varying numbers of facilities. The DE algorithm 

consistently outperforms MIP regarding total 

coverage, indicating its superior effectiveness in 

maximizing demand coverage. As the number of 

facilities increases, both algorithms show impro-

ved coverage, but DE exhibits a more pronounced 

improvement. 

Coverage varies under different traffic 

scenarios, emphasizing the need to consider 

varying traffic conditions in facility location 

problems. The analysis suggests that DE can 

effectively utilize additional facilities to increase 

coverage. It underscores the robustness of the DE 

algorithm in adapting to different problem scales 

and traffic conditions, making it a potentially more 

effective choice for solving facility location 

problems. 

The sensitivity analysis is also performed to 

understand how the variation in the output of a 

model can be attributed to different sources of 

variation in its inputs [31], [32]. In this context, a 

sensitivity analysis is performed to verify the 

impact of different probabilities on the coverage 

and number of facilities. It involves adjusting the 

probabilities of different scenarios and observing 

the effect on the model's output. The extreme 

scenario is set as the highest probability (50%), 

followed by the typical scenario (20%), the 

moderate congestion scenario (20%), and the light 

congestion scenario (10%). By doing this, the 

analysis can help determine how changes in traffic 

conditions might affect the optimal number and 

location of facilities, thereby aiding strategic 

decision-making in facility location planning. 

Table 9 presents the sensitivity analysis 

results where the extreme scenario has the highest 

probability. The table shows the coverage achi-

eved by DE and MIP algorithms under different 

traffic scenarios and for varying numbers of 

facilities. When the probability of the extreme 

scenario increases, both algorithms show a de-

crease in total coverage. It suggests that both DE 

and MIP are sensitive to extreme traffic condi-

tions,  and  their  performance  may  degrade under 

such conditions. However, the DE algorithm 

consistently outperforms the MIP algorithm in 

terms of total coverage, indicating its superior 

effectiveness in maximizing demand coverage 

under varying traffic conditions. 

 

3.2. Discussion and research implications 

The study found that the DE algorithm 

outperforms the MIP in various scenarios due to 

its ability to explore and adapt to complex problem 

landscapes. DE's population-based nature allows 

for extensive navigation of the solution space, 

making it suitable for problems with non-linearity, 

discontinuity, and multiple local optimal. 

Contrary   to    conventional    wisdom,    DE
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Table 7. A comparative performance analysis between the DE algorithm and MIP 
 

  DE algorithm   MIP 

m 
Coverage Avrg. Processing   Coverage Processing  

Average Max Min Std. (seconds)     (seconds) 

1 0.57 0.57 0.57 0.000 60.80  0.28 36.88 

2 0.72 0.72 0.71 0.003 74.70  0.36 41.19 

3 0.85 0.85 0.85 0.000 82.90  0.42 37.29 

4 0.91 0.92 0.91 0.005 67.80  0.45 36.81 

5 0.95 0.96 0.95 0.004 17.80   0.47 38.45 

 
m = 1 

 

m = 2 

 
m = 3 

 

m = 4 

 
m = 5 

 

Fig. 2. Best fitness value in each generation 

 

exhibited longer processing times than MIP. It is 

due to DE's iterative evolution of solutions over 

multiple generations until a termination condition 

is met, which in this study was set at 95% of the 

maximum possible demand coverage. 

MIP, on the other hand, uses a systematic 

branch-and-bound approach to explore the 

solution space. Its efficiency depends on the 

solution space's size and the bounding operations' 

effectiveness. In this study, MIP benefited from a 

smaller solution space and effective bounding, 

leading to quicker discovery of the optimal 

solution. 

Another significant finding is the DE 

algorithm's performance under different traffic 

scenarios. The algorithm's adaptability is crucial 

for a bakery business, as customer footfall can 

vary significantly depending on factors such as 
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time of day, day of the week, and season. By using 

the DE algorithm, bakery businesses can plan their 

operations to cater to these varying conditions, 

ensuring optimal service delivery and customer 

satisfaction. 

The DE algorithm used in this research to de-

termine the optimal business location for a bakery 

SMEs have several advantages and disadvantages. 

On the positive side, DE is a powerful and 

efficient global optimization algorithm capable of 

handling complex, non-linear, and multimodal 

problems. It is particularly effective in dealing 

with continuous spaces and can find global optima 

in large search spaces, making it suitable for our 

location optimization problem. Furthermore, DE's 

simplicity and ease of implementation are other 

advantages, as it requires fewer control parameters 

than other algorithms.  

On the downside, DE can sometimes 

converge slowly, especially for high-dimensional 

problems, which could be a limitation in scenarios 

where quick solutions are needed. Additionally, 

while DE is robust in handling a wide range of 

problems, it may not always provide the best so-

lution for certain specific or constrained problems 

compared to specialized algorithms. Lastly, DE, 

like other evolutionary algorithms, may require a 

significant number of function evaluations to 

reach the global optimum, which could be compu-

tationally expensive for very large problems. 

However, in the context of our study, the benefits 

of using DE outweigh these limitations. 

 

Table 8. A comparative of the coverage achieved by the DE and MIP  under different scenarios  and 

for varying numbers of facilities 
 

    Coverage in the scenario Total 

Method m Typical Light Moderate Extreme   

DE 1 0.29 0.11 0.11 0.06 0.57 

MIP 1 0.14 0.06 0.06 0.03 0.28 

DE 2 0.36 0.14 0.14 0.07 0.72 

MIP 2 0.18 0.07 0.07 0.04 0.36 

DE 3 0.43 0.17 0.17 0.09 0.85 

MIP 3 0.21 0.08 0.08 0.04 0.42 

DE 4 0.46 0.18 0.18 0.09 0.91 

MIP 4 0.23 0.09 0.09 0.05 0.45 

DE 5 0.48 0.19 0.19 0.10 0.95 

MIP 5 0.24 0.09 0.09 0.05 0.47 

 

Table 9. A comparative of the coverage achieved by the DE and MIP under different scenarios  and 

for varying numbers of facilities 
 

Method m 
Coverage in the scenario 

Total 
Typical Light Moderate Extreme 

DE 1 0.12 0.11 0.05 0.20 0.48 

MIP 1 0.05 0.05 0.02 0.12 0.24 

DE 2 0.15 0.14 0.05 0.27 0.61 

MIP 2 0.06 0.06 0.03 0.16 0.32 

DE 3 0.17 0.16 0.07 0.34 0.74 

MIP 3 0.08 0.08 0.04 0.19 0.38 

DE 4 0.18 0.17 0.08 0.38 0.81 

MIP 4 0.08 0.08 0.04 0.21 0.41 

DE 5 0.19 0.19 0.09 0.43 0.90 

MIP 5 0.09 0.09 0.05 0.23 0.45 
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The decision on the number of facilities to 

open and their locations has significant 

implications for the bakery store in Jakarta. The 

choice directly impacts the store's ability to 

maximize demand coverage across the 261 sub-

districts. 

If the store opts for a smaller number of 

facilities, such as 1 or 2, the coverage is lower. It 

means the store may be unable to serve a large 

proportion of the demand, potentially missing out 

on customers and sales. On the other hand, if the 

store decides to open a larger number of facilities, 

such as 4 or 5, the coverage significantly 

improves. This means the store can serve a larger 

proportion of the demand, potentially leading to 

higher sales and profits. Therefore, the store must 

balance the trade-off between maximizing cove-

rage (and potentially sales) and the number of 

business facilities. 

The optimum placement of business facilities 

and coverage areas is illustrated in Fig. 3. Each 

location  is  marked with a pop-up on the map, and 

 

m = 1 

 

m = 2 

 

m = 3 

 

m = 4 

 

m = 5 

 
 

Fig. 3. A visual representation of the optimum facility locations with different number of business 

facilities 
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the area covered by each location is color-coded to 

match the corresponding pop-up. These locations 

are considered optimal based on several factors. 

Firstly, they offer reasonable travel times between  

the facility and the customer locations, ensuring 

accessibility. Secondly, these areas are free from 

flood risks, providing a safer location and ensuring 

accessibility. Secondly, these  areas are free from 

flood risks, providing a safer environment for 

business operations. Lastly, these areas are 

densely populated, offering a larger potential 

customer base for the businesses. 

While this study provides valuable insights 

into the potential coverage that can be achieved by 

varying the number of facilities, it does not 

incorporate the cost of opening and operating 

these facilities. Therefore, it cannot definitively 

determine the optimal number of business faci-

lities. Costs, including rent, utilities, staffing, and 

inventory, among others, can significantly impact 

the profitability of each facility. A facility that 

increases coverage but operates at a loss would not 

benefit the business. 

Future research could incorporate cost 

considerations into the model to address this 

limitation. It could be achieved by assigning a cost 

to each potential facility location and including a 

budget constraint in the model. The objective 

would then be to maximize coverage subject to 

this budget constraint. It would provide a more 

realistic and applicable model for businesses. 

In the meantime, businesses could use the 

findings of this study as a starting point. They 

could first use the DE algorithm to identify 

potential facility locations that maximize cove-

rage. Then, they could evaluate the costs asso-

ciated with each location and make decisions 

based on coverage and cost. While not as efficient 

as a fully integrated model, this approach could 

still lead to more informed and effective decisions. 

The scalability of DE and MIP algorithms is 

a crucial aspect of their utility. As an SME bakery 

business expands, it may open new outlets, offer 

new products, or serve new markets. These 

changes increase the complexity of the location 

placement problem. However, the scalability of 

the DE and MIP algorithms ensures they can 

handle this increased complexity. They can 

manage a larger number of variables and con-

straints while still providing effective solutions. 

As the business grows, algorithms remain useful 

tools for decision-making. 

The adaptability of the algorithms is another 

key feature. In the real world, conditions change. 

Travel times can vary due to road works or traffic 

congestion. Population density may change as 

people move in or out of an area. The risk of 

disasters such as floods or earthquakes may 

increase or decrease over time. The DE and MIP 

algorithms can adapt to these changes. They can 

incorporate new data, adjust to new conditions, 

and respond to changes in the problem parameters. 

This adaptability allows the algorithms to provide 

up-to-date and relevant solutions, helping busi-

nesses to make informed decisions about location 

placement. SMEs can practically apply these 

insights to optimize their operations, improve their 

resilience to uncertainties, and ultimately enhance 

their competitiveness in the market. 

This research significantly advances facility 

location problem-solving, particularly for bakery 

businesses. It provides a comprehensive compa-

rison of the DE and MIP algorithms, introducing 

performance metrics such as coverage and pro-

cessing time. The study also explores the impact 

of the number of facilities and different traffic 

scenarios on the algorithms' performance. Additi-

onally, the consideration of different traffic scena-

rios in the analysis acknowledges the dynamic 

nature of customer demand, making this research 

highly relevant to real-world applications. Most 

importantly, it applies these findings to the 

development of a bakery business to a real-world 

context, demonstrating the practical relevance of 

these algorithms. 

 

4. CONCLUSION 

This study has provided significant insights 

into the application of differential evolution (DE) 

and mixed integer programming (MIP) algorithms 

for solving optimal business location problems, 

particularly for SME bakeries. The research 

highlighted the impact of the number of facilities 

on the algorithms' performance and underscored 

the need for adaptable solutions in the face of 

varying traffic scenarios. 

The unique contribution of this study lies in 

its practical application to real-world contexts, 

demonstrating the relevance and applicability of 

these algorithms in aiding SMEs in making 

informed location decisions. However, it is 

important to acknowledge that while the DE 

algorithm provides higher coverage, it does not 

incorporate cost considerations, a crucial factor in 

determining optimal business locations. 

This  limitation  points  to  potential  areas  for 
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future research. There is a need for further 

investigation that incorporates cost considerations 

to provide a more comprehensive decision-

making tool for businesses. It would help them 

balance coverage and profitability, which is 

important for sustainable growth and success. 

Thus, the findings of this study serve as a stepping 

stone towards more holistic and practical solutions 

for facility location problems  
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