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The primary objective of conventional manufacturing cell formation 

typically uses grouping efficiency and efficacy measurement to reduce voids 

and exceptional parts. This objective frequently leads to extreme solutions, 

such as the persistently significant workload disparity among the manu-

facturing cells. It will have a detrimental psychological impact on operators 

who work in each formed manufacturing cell. The complexity of the 

problem increases when there is a requirement to finish all parts before the 

midday break, at which point the formed manufacturing cells can proceed 

with the following production batch after the break. This research examines 

the formation of manufacturing cells using two widely recognised intelligent 

optimisation techniques: genetic algorithm (G.A.) and particle swarm 

optimisation (PSO). The discussed manufacturing system has flexible 

machines, allowing each part to have multiple production routing options. 

The optimisation process involved addressing four simultaneous objectives: 

enhancing the efficiency and efficacy of the manufacturing cells, 

minimising the deviation of manufacturing cells working time with the 

allocated working hours, which is prior to the midday break, and ensuring a 

balanced workload for the formed manufacturing cells. The optimisation 

results demonstrate that the G.A. outperforms the PSO method and is 

capable of providing manufacturing cell formation solutions with an 

efficiency level of 0.86, efficacy level as high as 0.64, achieving a minimum 

lateness of only 24 minutes from the completion target before midday break 

and a maximum difference in workload as low as 49 minutes. 
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1. INTRODUCTION 

Flexibility, encompassing volume and product 

type, is a significant competitive factor in make-to-

order supply chain systems. Nevertheless, an 

inverse relationship typically exists between 

flexibility and productivity. Therefore, it is crucial 

to identify the optimum balance between these two 

factors by considering production shop floor mana-

gement that can increase production efficiency, 

safety, and quality [1]–[3]. From a technical stand-

point, a production system that prioritises flexibility 

will adopt a job shop layout that involves grouping 

machines based on their function and forming 

several workstations. The utilised material handling 

system is highly adaptable, enabling the seamless 

transfer of semi-finished goods between work-

stations. In a job shop configuration, the manu-

facturing system can handle many product types 
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without limits on the direction of the material flow. 

However, this results in a complex and lengthy 

material flow process, which increases the 

production cycle time. Increasing the duration of 

the production cycle time will lead to a decline in 

productivity and, consequently, an increase in 

production costs. Researchers have conducted nu-

merous previous studies to minimise the production 

cycle time by minimising the scheduling makespan 

[4], [5] or total completion time [6]. 

The flowshop layout is also commonly used in 

manufacturing systems, where production ma-

chines are arranged based on product production 

routing [7], [8]. A production system with a fellow-

ship configuration exhibits limited flexibility, 

necessitating serial or multiple flow shop systems 

[9] or creating a new production line tailored to the 

new products. A conveyor with a linear flow is the 

typical material handling equipment employed in 

production systems with a flow shop layout. The 

flow shop layout aims to streamline the material 

flow, resulting in a linear and simplified material-

handling process. This condition reduces material 

transfer times and ultimately shortens production 

cycle times, and the short production cycles will en-

hance productivity and potentially lower product-

ion costs. 

A hybrid layout combining the advantages of 

job shops and flowshop can enhance the flexibility 

and productivity of a manufacturing system [10]. 

The hybrid layout is commonly referred to as group 

technology, where the manufacturing system is 

divided into multiple manufacturing cells, each 

with a flow shop layout. The term commonly used 

to describe this manufacturing system is cellular 

manufacturing system (C.M.S.). A CMS exhibits 

greater flexibility than a flowshop, but is not as high 

as a job shop. Additionally, a C.M.S. demonstrates 

higher productivity than a job shop, although not as 

high as a flowshop. Implementing a C.M.S. can 

assist a manufacturing organisation in decreasing 

the rate of parts deficiency, reducing setup times 

and costs, shortening completion times, optimising 

factory space needs, and streamlining material 

routes [11]. 

In the analysis, the formation of manufac-

turing cells typically utilises input data, such as the 

incident matrix, which outlines the connection 

between parts and the machines required for their 

manufacturing processes. Subsequently, the 

incident matrix was organised into clusters to 

establish manufacturing cells. Various methods 

have been employed for this objective, including 

bicluster graph editing [12], simulation-based evo-

lutionary system [13] and spectral clustering algo-

rithm [14]. Typically, manufacturing systems in a 

make-to-order (M.T.O.) supply chain environment 

possess flexible machinery, enabling them to 

perform multiple manufacturing processes. It is 

conceivable for a part to have multiple production 

routes within its manufacturing system. As a result, 

the incident matrix will present all potential 

production routes for each part. In order to establish 

a cellular manufacturing system, it is important to 

concurrently determine the production route for 

each part while clustering the incident matrix based 

on the determined parts' production routing. To the 

best of our knowledge, no established algorithm has 

yet been implemented for this purpose. 

Typically, in conventional approaches, the 

manufacturing cell formation is determined by an 

efficiency metric that evaluates the quality of 

machine-part clustering [15]. The pioneering work 

of Chandrasekharan & Rajagopalan introduced this 

metric [16]. Another metric that can be employed is 

efficacy, which was initially proposed by Kumar & 

Chandrasekharan [17]. These two measurements 

can be obtained by reducing the number of 0s in the 

diagonal cluster and the number of 1s outside the 

diagonal cluster in an incident matrix. These two 

measurements are highly efficient for forming 

manufacturing cells and have been utilised by 

numerous earlier researchers [18]–[22]. Never-

theless, these two measurements fail to consider the 

processing time of the parts on the machines, 

resulting in potentially extreme outcomes, such as 

considerable gaps in the manufacturing cell work-

load.  

This study was conducted in an Indonesian 

industry operating in the M.T.O. supply chain 

environment, specifically focused on the product-

ion of office equipment. The industry manufactures 

40 components, with 15 flexible machines on the 

production floor. Two production routing alter-

natives existed for each part, resulting in an incident 

matrix size of 80 × 15. It can be categorised as a 

large-scale case of forming C.M.S. The case can be 

viewed as a combinatorial optimisation problem 

with the solution to find the sequence of parts and 

machines in the incident matrix forming manufac-

turing cells. The complexity of the pro-

blem increases when there is a requirement to finish 

all parts before the midday break, at which point the 

formed manufacturing cells can proceed with the 

following production batch after the break. 

Therefore, ensuring that the workload in all the 
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formed manufacturing cells is effectively controll-

ed is essential to avoid surpassing the allocated 

working time. Alternatively, if achieving this is not 

feasible, effective reduction of work overload is 

imperative.  

Many researchers have commonly employed 

artificial intelligence (AI) systems or intelligent 

models to address the issue of forming large-scale 

C.M.S.. [23]–[25]. Nevertheless, most studies on 

C.M.S. formation continue to rely on the assess-

ment of efficiency and efficacy. A study conducted 

by Farboodi et al. [26] considered workload 

balancing of the manufacturing cells; however, that 

study did not consider efficiency, efficacy, and 

designated working hours. To the best of our know-

ledge, no prior research on the C.M.S. formation 

considers the processing time of the parts at all of 

the machines to ensure that the C.M.S. operates 

within the designated working hours. In addition, 

the C.M.S. formation should consider the balanced 

workload distribution among all the manufacturing 

cells to mitigate any adverse psychological impacts 

on operators within the cells. 

This study examines the formation of a C.M.S. 

by simultaneously addressing four objectives: 

maximising efficiency, maximising efficacy, mini-

mising deviation of the formed C.M.S. working 

time from the allocated working hours, and mini-

mising workload gaps among the formed manufac-

turing cells. With these objectives, this research 

will contribute substantially to research on C.M.S. 

formation. Currently, no formal algorithm can be 

used to form C.M.S. with those objectives concur-

rently. The existing established methods are just to 

form C.M.S. to maximise grouping efficiency and 

or efficacy [27]. 

This problem can be resolved by employing a 

conventional mathematical model that establishes 

the interaction between two parts or machines to 

ascertain the sequence of such parts or machines in 

the incidence matrix. Nevertheless, this method 

necessitates the use of 
15!

2!×(15−2)!
= 105 variables 

to represent the 15 machines sequence and 
40!

2!×(40−2)!
= 780 variables to indicate the sequence 

of parts with 2 alternate production routings. 

Additional variables are required to represent the 

values of 1 or 0 in the incident matrix, specifically, 

15 × 40 = 600 variables. Furthermore, the variables 

need to reflect the processing time of each part of 

each machine, for a total of 600 variables. Hence, a 

minimum of 2085 variables was necessary. Given 

the many variables, an intelligent optimisation 

algorithm is considered significant as an alternative 

algorithm to address this problem. 

This study employs two intelligent optimi-

sation techniques, the genetic algorithm (G.A.) and 

particle swarm optimisation (PSO), to address 

extensive combinatorial optimisation problems 

[28]–[31]. G.A. exhibits proficient powers in 

exploration and exploitation, although its intricate 

algorithmic complexity burdens it. PSO exhibits 

proficient exploitation capabilities, although its 

exploration capability remains inferior to those of 

G.A. However, the PSO algorithm structure is less 

complex than that of G.A. The effectiveness of the 

suggested method will be measured after optimi-

sation, and valuable insights for future study will be 

provided. 

 

2. RESEARCH METHODS 

2.1. Data collection 

The data to be collected consists of opera-

tions process charts (O.P.C.) for 40 parts and their 

processing time in the 15 machines. In addition, a 

discussion was held with the manufacturing 

process planner to determine the specific manu-

facturing process required for forming the parts. 

The information obtained from the O.P.C. and 

subsequent conversations with the process planner 

are summarised in Table 1, and simultaneously 

represent the incident matrix of the parts and 

machines 

 

2.2. G.A. modelling 
 

2.2.1. Chromosome design 

Three decision variables must be determined: 

the optimum production routing for the parts, the 

sequencing of parts, and the arrangement of 

machines in the incident matrix to establish the 

manufacturing cells. Consequently, the three 

genes within a chromosome reflect the decision 

variables, as shown in Fig. 1. 

 

2.2.2. Fitness function formulation 

The chromosome in the G.A. was evaluated 

based on its fitness value. In the context of G.A., 

the fitness value of the chromosomes is defined by 

a fitness function generated from the objective 

functions. The subsequent sections elaborate on 

converting the objective functions into the fitness 

function of the chromosome. The efficiency and 

efficacy formula used in this study is proposed by 

Chandrasekharan &  Rajagopalan [16] and Kumar  
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Table 1. Processing time of the parts (in minutes) 
 

Part 
Routing 

Alternatives 

Machines 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 
1      41   11      42 

2       28   10 8                 

2 
1 43   34         16               

2   40 20         28 39             

3 
1     11   40                 18   

2       24 28                   10 

4 
1   25 29         12 19             

2     20 41   41                   

5 
1             40 13 43     37 26     

2           39     30     21     19 

6 
1       28       12   10           

2     18 25     29                 

7 
1             26     17 29     29   

2         35   19     19   22       

8 
1 36   34         18               

2     17       8       35         

9 
1     8     42   17 31   8         

2       17 23   19 27         42     

10 
1                     11 34 37 30 31 

2                 36 32 31   39 21   

11 
1   24 20         39               

2       7 33     42               

12 
1         27   22 37 33             

2       30     17 30               

13 
1                   23 37     38 32 

2       23 27 29 19                 

14 
1         22 12                 29 

2             11 37           40   

15 
1 30 25         27 10               

2   28 36                   12 22   

16 
1       25 13   23     11           

2         39   8     33         23 

17 
1 27       36     40         7     

2 29         20     12             

18 
1       16   17         28     12   

2       29   32     41           10 

19 
1 38   19   15             18       

2 34 40 21             40           

20 
1                   11 38   13 22   

2               12   13 8       35 

21 
1                   18 14 22 13 35   

2                 9 30 16 13   10   

22 
1 33     12       43         41     

2         23   25       14         

23 
1                   36     12     

2                 16           15 

24 
1                     30   22 36 11 

2                   21 23 29 13     

25 
1           13               27 24 

2           24           39 20     

26 
1       21 15   8                 

2       13 10     17               

27 
1     38 13 16     29               

2 35 17 27         13               

28 
1                   17   29   30 36 

2 30   36   43                 26   

29 
1           12     38   23       36 

2     35         12   17   36   17   

30 
1   23 25         25               

2           25     13   19         

31 
1   21   33   11 20   32             

2       23   7         13   41 28   

32 
1           22   43 32             

2     41   20         28           

33 
1   31         39 28         11     

2                   20 17   38 19   

34 
1 35 35 14     22                   

2   22 38           25   7         

35 
1                     38 21   28   

2           7     8 27           

36 
1         18   16   31             

2     41         21       28       

37 
1 43     16       19               

2   23     17   8                 

38 
1     34     32 15               39 

2                   41 30 23 15     

39 
1           39       37   28 36 24   

2       35 21     37     32         

40 
1           43       17           

2       14     27                 

 

 

http://dx.doi.org/10.30656/jsmi.v8i1.7974


Jurnal Sistem dan Manajemen Industri Vol 8 No 1 June 2024, 11-21 

 

         http://dx.doi.org/10.30656/jsmi.v8i1.7974   15 

 

 
Fig. 1. Design of the chromosome for the C.M.S. formation 

 

& Chandrasekharan [17] and represented by Eq. 1 

and Eq. 2, respectively. 

𝑔𝑒 = (0.5 × 𝑏1) + (0.5 × 𝑏2) 

𝑏1 =
𝑜 − 𝑒

𝑜 − 𝑒 + 𝑣
 

𝑏2 =
𝑃 × 𝑀 − 𝑜 − 𝑣

𝑃 × 𝑀 − 𝑜 − 𝑣 + 𝑒
 

(1) 

𝑔𝑐 =
𝑜 − 𝑒

𝑜 + 𝑣
 

 

(2) 

 

Where b1: ratio of the number of 1s in the formed 

cells compared to the formed cells matrix size; b2: 

ratio of the number of 0s in the off-formed cells 

compared to the total size of off-formed matrix 

size; o: number of 1s in the incident matrix; e: 

number of exceptional parts in the solution; v: 

number of voids (0s) in the solution; P, M: number 

of parts, machines; ge: grouping efficiency and gc: 

grouping efficacy. 

Eq. 1 and Eq. 2 imply that ge and gc will 

reach their maximum values when v and e values 

are minimised. From a technical computing 

perspective, the v and e values can be minimised 

by minimising the total difference value between 

columns for all rows and the total difference 

values between rows for all columns. Fig. 2 

illustrates the concept explained above. 
 

 
 

Fig. 2. Illustration of no cells formed and cells 

formed 

 

In Fig. 2, dc and dr represent the difference 

value between columns and the difference value 

between rows, respectively. An example calcul-

ation of dc for part 1 is 𝑑𝑐1 = 𝑎𝑏𝑠(1 − 0) +

𝑎𝑏𝑠(0 − 1) + 𝑎𝑏𝑠(1 − 1) + 𝑎𝑏𝑠(1 − 0) = 3, while 

the example calculation for machine 1 is 𝑑𝑟1 =

𝑎𝑏𝑠(1 − 0) + 𝑎𝑏𝑠(0 − 0) + 𝑎𝑏𝑠(0 − 1) + 𝑎𝑏𝑠(1 −

0) + 𝑎𝑏𝑠(0 − 1) = 4 . The perfect manufacturing 

cell formation will result in minimum total DC and 

dr. The minimum dc and dr values are equal to the 

number of parts and machines, respectively. 

Therefore, to maximise ge and gc simultaneously, 

Eq. 3 will be employed. 
 

𝑀𝑖𝑛 𝑇𝐶𝑅 = ∑ ∑ |𝑒𝑙𝑝𝑚 − 𝑒𝑙𝑝𝑚+1|

𝑀−1

𝑚=1

𝑃

𝑝=1

+ ∑ ∑|𝑒𝑙𝑚𝑝 − 𝑒𝑙𝑚𝑝+1|

𝑃−1

𝑝=1

𝑀

𝑚=1

 

        

(3) 

Where TCR: total difference value between 

columns and rows; and el: element value in the 

incident matrix; 
 

𝑒𝑙𝑝𝑚 = {
1, 𝑖𝑓 𝑝𝑎𝑟𝑡(𝑝) 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑚)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Each part of the industrial system under 

consideration has two production route alter-

natives, and the selection of a production route 

affects both the workload of the machines and the 

outcomes of manufacturing cell formation. The 

allocated working hours for one production batch 

of the analysed industrial system is 4 hours or 240 

minutes, specifically from 8 am until the midday 

break at 12 noon. With the selected production 

routing of each part, in order to prevent the C.M.S. 

from becoming overloaded when its working time 

exceeds the allocated working hours and from 

becoming idle when its working time is less than 

the allocated working hours, Eq. 4 will be utilised. 
 

𝑀𝑖𝑛 𝑑𝑤𝑡 = 𝐴𝑏𝑠 (𝑀𝑎𝑥 (∑ 𝑡𝑝𝑚; 𝑚

𝑃

𝑝=1

= 1, 2, … , 𝑀) − 240) 

(4) 

Where dwt: deviation of C.M.S. working time 

with the allocated working hours; and tpm: 

processing time of part(p) on machine (m). 

The workload of the formed manufacturing 

cells will be identified from their total working 

time, and minimising the workload gap among the 

formed manufacturing cells will be carried out by 
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Fig. 3. Mechanism of the one-cut point and order crossover 

 

minimising the smoothness index value proposed 

by Elsayed & Boucher [32] as expressed by Eq. 5. 
 
 

𝑀𝑖𝑛 𝑠𝑖 = √∑(𝑀𝑎𝑥𝐶𝑡 − 𝐶𝑡𝑐)2

𝐶

𝑐=1

 

𝐶𝑡𝑐 = 𝑀𝑎𝑥 (∑ 𝑡𝑝𝑚𝑐; 𝑐 = 1, . . , 𝐶

𝑃

𝑝=1

) 

(5) 

 

Where: Si: smoothness index;  MaxCt: Maximum 

working time of formed manufacturing cells; Ct: 

working time of a manufacturing cells; c : formed 

manufacturing cell index; and  C: number of 

formed manufacturing cells. 

All of the functions above are minimisation 

functions, which is opposite to the concept of 

searching in G.A. and PSO, which considers the 

strongest chromosome or particle as the solution. 

Therefore, the fitness function for the 

chromosome must be converted from the 

minimisation function to the maximisation 

function, as shown in Eq. 6. 
 

𝐸𝑣𝑎𝑙𝑘 = 𝐵 − (𝑇𝐶𝑅 + 𝑑𝑤𝑡 + 𝑠𝑖) (6) 
 

Where Eval : fitness of a chromosome in G.A. or 

particle in PSO; k : chromosome or particle index; 

and B: a significant number that always makes the 

Eval have positive results. In this case, B is set to 

10000. 

2.2.3. Crossover mechanism 

In this study, two types of crossover 

mechanisms were applied: one-cut point crossover 

for the first gene and order crossover, as proposed 

by Smith in 1980 [33], for the second and third 

genes. The mechanism of the proposed crossover 

is illustrated in Fig. 3. The proposed crossover 

mechanism will be able to produce feasible child 

in every generation. 

 

2.2.4. Mutation mechanism 

In this study, two mutation mechanisms were 

proposed: flip mutation for the first gene, and 

swap mutation for the second and third genes. Fig. 

4 shows the proposed mutation mechanism. The 

proposed mutation mechanism will be able to 

produce a feasible child in every generation 

 

2.3. PSO modelling 

When it comes to PSO, the particle design is 

the sole aspect that requires meticulous conside-

ration. The particle is assessed using the fitness 

function employed by the G.A., as shown in Eq. 6. 

In this study, a particle consists of two sub-

particles. The first sub-particle represents the 

optimum production route for each part, while the 

second sub-particle represents the sequence of 

machines and parts. Random numbers between 1 

and 2 are assigned for  the first sub-particle, while 

the    second    sub-particle    is    assigned    random

 

 
 

Fig. 4. Mechanism of the proposed mutation 
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Fig. 5. The proposed particle design in the PSO 

 

 

numbers between 0 and 1. 

These numbers indicate the order of the 

machine or part once they are sorted in ascending 

order. This representation technique is used 

because PSO was initially designed to address 

optimisation problems with real numbers. Every 

particle element must move concerning the 

optimum particle in the group (global best) and the 

most favourable position ever discovered by the 

particle (particle best position). Hence, the pure 

permutation representation in the PSO is not 

feasible. Fig. 5 depicts the proposed particle 

design and the represented solution. 

In the proposed PSO, the position of each 

particle is updated using a standard formula, 

where the new position of the particle is the result 

of the particle's direction and the position of the 

best particle, as depicted in the following Eq. 7. 
 

𝑛𝑝𝑟 = 𝑜𝑝𝑟 + 𝑣𝑟 

𝑣𝑐𝑟 = 𝑣𝑐𝑟 + 𝑎𝑐1 × 𝑟1 × (𝑝𝑏𝑒𝑠𝑡𝑟 − 𝑜𝑝𝑟)
+ 𝑎𝑐2 × 𝑟2

× (𝑔𝑏𝑒𝑠𝑡 − 𝑜𝑝𝑟) 

   

(7) 

 

Where r: particle index; np: new position of a 

particle; op: old position of a particle; vc : velo-

city of a particle; pbest: the best position ever of a 

particle; gbest: the global best position; ac: 

accelerating coefficient; and r: random number, 

introducing the stochastic. 

 

3. RESULTS AND DISCUSSION 

While there is no formal procedure for 

determining the number of chromosomes in the 

G.A. or the number of particles in the PSO, it is 

important to consider the balance between the 

number of searching agents and the computational 

burden. The proposed G.A. has been run with the 

population size = 30, while the number of particles 

in the PSO is also 30. The crossover rate in the 

G.A. is set to 0.5 to introduce variability in the 

combination process within the population, and 

the mutation rate is set to 0.2 to allow the G.A. to 

escape from a monotone searching process while 

maintaining a controlled level of randomness. 

Both GA and PSO ran for 500 generations or 

iterations, and Fig. 6 shows the search results of 

the G.A. and PSO. 

Fig. 6 demonstrates that the proposed G.A. 

and PSO effectively maintain the diversity of their 

respective searching agents, chromosomes in G.A. 

and particles in PSO. Therefore, it can be 

concluded that the proposed G.A. and PSO are not 

susceptible to monotone searching and are not 

confined to local optimum solutions. However, 

both methods can converge towards an optimum 

or nearly optimum solution. The solution gene-
rated by the G.A. is superior to the PSO's. Conse-

quently, the optimised incident matrix obtained by 

the G.A. was utilised for the subsequent analysis,

 
 

Fig. 6. Searching result of the proposed G.A. and PSO
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as depicted in Fig. 7. 
 

 
 

Fig. 7. The optimised incident matrix by 

proposed G.A. 

 

In addition to preserving the diversity of 

chromosomes and particles, the proposed G.A. 

and PSO can also achieve convergence towards 

the solutions they discover. It Starts with the 

generation of 172. The search graph shows that 

G.A. is converging, and for over half of the 

generations, there has been no further impro-

vement in the fitness value. Similarly, PSO achi-

eved convergence starting at the 134th iteration. 

Additionally, it is evident that the proposed 

optimisation model for manufacturing cells 

formation is a convex model, hence possessing an 

optimum solution value. 

Grouping efficiency (ge) and grouping 

efficacy (gc) based on Fig. 7 above are 0.86 and 

0.64, respectively. According to this result, it can 

be concluded that the efficiency of the grouping is 

reasonably high, and the suggested G.A. is 

successful in forming the C.M.S., as indicated by 

a gc value of more than 0.5. The proposed solu-

tion's smoothness index (si) is 38.1, with working 

time of the formed manufacturing cell 1 to 4 being 

215, 259, 264 and 262 minutes, respectively. The 

maximum lateness of the working time of the 

formed manufacturing cells from the allocated 

working hours is 264 – 240 = 24 minutes, while 

the maximum working time gap of the formed 

manufacturing cells is 264 – 215 = 49 minutes. 

The deviation in the working time of the formed 

manufacturing cells with the allocated working 

hours is shown in Fig. 8. 
 

 
 

Fig. 8. Deviation of the cells' working time with 

the allocated working hours 

 

Unlike the study conducted by Farboodi et al. 

[26], this study has considered production sche-

dule factors relevant in practical situations, which 

is the midday break schedule for the operators. 

Thus, one of the main optimisation objectives in 

creating manufacturing cells is to minimise the 

discrepancy between the actual working time of 

each cell and the assigned working time. All the 

operators must synchronise their work and rest 

schedules to mitigate the adverse psychological 

effects on operators. It will minimise the resis-

tance factor of the operators when the proposed 

solution is implemented. 

The industry system being examined pos-

sesses flexible machines, enabling multiple 

production routes for a part. Nevertheless, this 

condition further complicates the optimisation 

model. It can be seen from Fig. 1, which requires 

a long solution representation, as it encompasses 

the arrangement of parts and machines and the 

selection of the production route. However, the 

proposed intelligent optimisation algorithm 

successfully optimised this problem. 
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In addition to making major contributions to 

the study of manufacturing cell formation, this 

study also offers valuable managerial insights. It 

reveals that the formation of the manufacturing 

cells does not necessarily require a physical re-

layout of the plant. The suggested manufacturing 

cells can be logically established by controlling 

the movement of the parts to the formed 

manufacturing cells. The study findings also offer 

insights for managers to decrease the production 

time in manufacturing cells no. 2, 3, and 4 by 

roughly 24 minutes. It can be done by analysing 

unnecessary setup activities not yet considered in 

this study. It ensures that the production batch is 

completed before the midday break. If this can be 

achieved, decreasing the smoothness index value 

to 25 and the working time gap value to 25 

minutes will be feasible. It will enhance the equi-

librium of the workload in the production cells, 

resulting in a favourable psychological effect on 

the workers in each formed manufacturing cell. 

 

4. CONCLUSION 

Based on this study, it can be concluded that 

when establishing flexible manufacturing cells, 

the selection of parts production routing should be 

carried out concurrently with the formation of 

manufacturing cells. It is crucial as it directly 

affects the workload distribution among the manu-

facturing cells and the ability to meet designated 

working times. Maximising the grouping effici-

ency and efficacy can be achieved by minimising 

the number of voids and exceptional parts. It can 

be achieved by minimising the total difference in 

element values between the columns and rows in 

the incidence matrix. This study also discovered 

that the proposed G.A. and PSO possess strong 

abilities to preserve the diversity of chromosomes 

and particles in every generation and iteration. 

Nevertheless, the results of this study indicate that 

the G.A. outperforms the PSO. 

This research still does not pay attention to 

batch scheduling for the parts, which can poten-

tially reduce production time. In the future study, 

it is advisable to consider the potential for batch 

splitting to ensure compliance with the designated 

working times. In addition, the setup time 

reduction can be achieved by segregating internal 

setup tasks from external setup tasks. In the 

subsequent analysis, reliability analysis can be 

used to proactively anticipate the occurrence of 

machine breakdown 
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