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This research addresses order planning challenges related to perishable 

products, using bread products as a case study. The problem is how to effi-

ciently manage the various bread products ordered by diverse customers, 

which requires distributors to determine the optimal number of products to 

order from suppliers. This study aims to formulate the problem as a lot-

sizing model, considering various factors, including customer demand, in-

ventory constraints, ordering capacity, return rate, and defect rate, to achieve 

a near or optimal solution. Therefore, determining the optimal order quantity 

to reduce the total ordering cost becomes a challenge in this study. However, 

most lot sizing problems are combinatorial and difficult to solve. Thus, this 

study uses the Genetic Algorithm (GA) as the main method to solve the lot 

sizing model and determine the optimal number of bread products to order. 

With GA, experiments have been conducted by combining the values of 

population, crossover, mutation, and generation parameters to maximize the 

feasibility value that represents the minimal total cost. The results obtained 

from the application of GA demonstrate its effectiveness in generating near 

or optimal solutions while also showing fast computational performance. By 

utilizing GA, distributors can effectively minimize wastage arising from 

expired or perishable products while simultaneously meeting customer 

demand more efficiently. As such, this research makes a significant contri-

bution to the development of more effective and intelligent decision-making 

strategies in the domain of perishable products in bread distribution. 
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1. INTRODUCTION 

Order planning is an important operation 

management process involving strategic decision-

making to optimize the ordering strategy while 

minimizing costs. It is an activity that manages 

ordering resources to achieve goals over a certain 

period, called a planning horizon. In the medium-

term planning horizon, lot sizing is important 

because it decides the number of products distri-

buted and where those products should take place 

to fulfil the demand while minimizing the product-

ion, setup/order, and inventory cost. In addition, 

most industries have multiple products that must 

be handled to make inventory management more 
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complex [1], [2].  

One of the interesting and challenging 

applications of the lot sizing problem is in the case 

of perishable products. It encompasses a range of 

products with limited shelf life and susceptibility 

to rapid spoilage or deterioration. This category 

comprises fresh food, dairy products, meat, poul-

try, fish, fruits, vegetables, bread goods, and phar-

maceuticals. According to Tiseo [3], Indonesia is 

the world's fourth-largest country in household 

food waste, which makes this research urgent. 

These products' quality and safety can be 

significantly impacted by their sensitivity to 

temperature, humidity, and other environmental 

conditions. Therefore, specialized handling, sto-

rage, and transportation protocols are essential to 

preserve their quality and prevent spoilage. 

Efficient management of perishable products is 

paramount for businesses striving for success, and 

accurate inventory tracking is pivotal in this 

endeavor. Managing perishable products is critical 

for companies that want to succeed, and inventory 

tracking becomes mission-critical.  

For perishable products, efficient lot sizing 

management is crucial to optimize inventory and 

reduce wastage [4]. By using the right lot sizing 

model, companies can determine the optimal lot 

size for ordering or producing products, which can 

help match market demand and reduce the risk of 

damaged or expired products [5]. Lot sizing 

models also help find the right balance between 

ordering or production costs and inventory costs, 

which can help companies maximize their profits 

by avoiding unnecessary costs [6]. Additionally, 

the demand for perishable products often fluctu-

ates, and lot sizing models can help companies 

efficiently plan orders or production to cope with 

this dynamic demand [7]. Perishable products 

require a quick response to market and demand 

changes, and lot sizing models can help companies 

plan orders better, ensuring the availability of the 

right stock at the right time [5].  

Dynamic demand is another significant 

element that emerges in most practical applica-

tions. Determining inventory decisions is signifi-

cantly more challenging, mainly when dealing 

with perishable products. Kırcı et al. [8] presented 

that it is crucial to determine the optimal reple-

nishment strategy through demand prediction up-

dates to reduce costs associated with overage and 

underage. Polotski et al. [9] proposed a production 

strategy that accounts for a finite product shelf-life 

and periodic demand changes. Dehghani, et al. 

[10] proposed a proactive transshipment policy to 

avoid future shortages and mitigate wastage under 

demand uncertainty for the blood supply chain 

using stochastic programming. Those costs also 

impact the pricing decisions for perishable 

products [11]–[13]. Feng et al. [14] developed an 

inventory model for perishable goods when the 

demand depends on the selling price, displayed 

stocks, and expiration date.  

Complexity theory and computational 

experiments have demonstrated that the majority 

of lot-sizing problems pose significant challenges 

in terms of solvability. To address this complexity 

and attain near or optimal solutions within a 

reasonable computational timeframe, many 

researchers have turned to heuristic approaches for 

lot sizing problem-solving in recent years [15]–

[17]. Among the various heuristic approaches, 

evolutionary computation, particularly Genetic 

Algorithms (GAs), has garnered considerable 

attention as the most prominent method. GA is 

based on an evolutionary algorithm that is inspired 

by the process of natural selection and natural 

genetics [9]. By mimicking those principles, 

genetic operators manipulate individuals in a 

population over some generations to increase their 

fitness.  

Meta-heuristic approaches, especially using 

GA, have become one of the solutions in solving 

complex lot sizing problems. GAs can explore the 

solution space thoroughly, identify complex pat-

terns, and find near or optimal solutions relatively 

quickly. This approach is particularly important 

because lot sizing often involves many products 

and complex production constraints. Other 

approaches, such as analytical and heuristic ap-

proaches, may not be able to provide accurate and 

efficient solutions in as short a time as GA [17].  

Some notable examples of previous research 

have considered lot sizing problems and model 

solutions. Pasandideh et al. [18] proposed an 

optimized EOQ model using GA to address 

challenges in a two-tier supply chain system, such 

as backorder shortages, limited warehouse 

capacity, and order ceilings. However, the model 

does not consider perishable products and non-

dynamic demand. 

Azadeh et al. [19] proposed an inventory 

routing model with transshipment for perishable 

products using a GA-Taguchi-based approach. 

Although this model makes a valuable 

contribution, its weakness lies in focusing on only 

one product and the non-inclusion of ordering 
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costs in its analysis. In the context of current 

research, it is important to consider multiple 

products and ordering costs to develop such 

models. 

In addition, the model developed by Wang et 

al. [20] tackles the multilevel capacity lot-sizing 

problem and introduces improvements to fuzzy-

GA. The results show that the proposed solution 

has better convergence and stability than the 

standard GA, producing an optimal lot size closer 

to the average optimal value. The difference 

between this research is its use in production, 

while the proposed research focuses more on 

ordering problems. 

Kurade and Latpate [21] developed an EOQ 

model that considers demand variations in 

situations with no backlogging, partial back-

logging, and full backlogging. They used a GA to 

optimize the economic order quantity under 

demand distribution assumptions such as log-

normal or exponential distribution. A case study 

of a deteriorating product is used to illustrate the 

applicability of the proposed inventory model in a 

real-world context. 

Panda et al. [22] addressed product damage 

control in an EOQ model, emphasizing reducing 

damage and storage costs through dynamic pre- 

and post-deterioration cumulative discount 

policies. The results show that this approach is 

more efficient than static pricing strategies in 

optimizing inventory. However, the model has 

significant drawbacks, namely using a static EOQ 

model that does not consider fluctuations in 

product demand over time and not using GA in its 

solution, which may limit its ability to deal with 

more complex or non-linear problems. 

Based on the previous studies above, the lot 

sizing model cannot be solved analytically due to 

the complexity of the problem involving many 

interrelated variables and constraints. In lot sizing 

decisions, it is necessary to consider factors such 

as fluctuating customer demand, order cost, 

production cost, production capacity constraints, 

initial inventory, delivery time, perishable 

products, etc. These variables are often dynamic 

and influence each other, creating a complex 

solution search space. Employing analytical or 

heuristic methods to solve lot sizing models 

requires complicated mathematical formulas and 

sometimes cannot be solved explicitly. Therefore, 

analytical approaches often make it impossible to 

produce an optimal solution in a reasonable 

amount of time. In these cases, GA becomes a 

more realistic and efficient option, as it can 

explore complex solution spaces and find near or 

optimal solutions without requiring explicit 

analytical solutions that are difficult to generate. 

This study is founded upon empirical 

research on perishable products, particularly bread 

distribution. In addition to addressing demand 

uncertainty, the investigation explores several 

challenges inherent to dealing with perishable 

items, including varying fixed shelf-life durations 

for different products, uncertain return rates, 

multi-period considerations, time-varying 

demand, and the intricacies of managing inventory 

and distribution from manufacturers to distri-

butors and finally to customers. One notable 

impact of these challenges is the potential for a 

high return rate, which can significantly diminish 

the company's overall profitability. 

This study presents a new approach for 

modelling lot size optimization focused on perish-

able products, contributing to enhancing inventory 

policy within a complex industrial environment. 

Moreover, it addresses relevant operational 

challenges that manufacturers and distributors 

commonly face, including return rate variability. 

This aspect of real-world systems has not yet 

undergone thorough investigation, rendering it a 

significant step towards developing interesting 

applications. The main objective of this research 

is to optimize order quantities for perishable 

products, considering multi-product, multi-cus-

tomer, and multi-period environments. 

The rest of the paper is organized as follows. 

In Section 2, we provide a formal definition of the 

problem and propose the integration of 

mathematical models and GA. Computational 

experiments and analysis are carried out in Section 

3. Lastly, we provide conclusions and some future 

research directions in Section 4. 

 

2. RESEARCH METHODS 

2.1. Problem descriptions 

This study investigates the intricacies of 

multi-product and multiple-period lot sizing 

problems concerning perishable commodities. 

Fig. 1 shows that the focal point of this investi-

gation is the scenario involving a distributor's 

procurement of perishable goods, such as bread, 

from a manufacturer based on the retailers' 

demand. The present research establishes a 

designated product set denoted as 𝑝, with careful 

consideration given to the partitioning of the 

planning horizon into 𝑡 discrete periods. 
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Fig. 1. An order planning system involves a single distributor ordering products from the 

manufacturer following the retailer's demand 

 

The major problem in the real system is that 

there is no order planning from the distributor to 

the manufacturer. It impacts the inaccurate 

handling of stock items with limited shelf life, less 

than optimal utilization, and significant potential 

losses due to deterioration or expiration. The 

deterioration rate of this product causes a decrease 

in the quality of the product. The significant 

attribute of the quality of perishable products is 

their freshness. The freshness of the perishable 

product is usually tested by its appearance as 

examined by the consumers. When consumers 

decide between two similar perishable products 

with the same price, they will most likely choose 

the one that appears fresher. Therefore, it can be 

seen that deterioration is inversely proportional to 

its quality and consumer demand. This problem 

can significantly impact operational efficiency, 

costs, and customer satisfaction. Therefore, 

optimal order planning based on historical data is 

required to minimize overall costs.  

Due to the model's NP-hardness and non-

linearity, a model-based heuristic is proposed that 

focuses on solving small instances quickly, and a 

GA with a new progressive repair technique is 

created to handle large cases. 
 

2.2. Notations and assumptions 

The following notations are: 
 

Index Set 

𝑡 : Number of periods, 𝑡 =
 1, 2, 3, … , 𝑇. 

𝑝 : Number of products,  𝑝 =
 1, 2, 3, … , 𝑃. 

𝑓 : One set of the total planning 

periods. 

Parameter 

𝐴𝑡,𝑝 : Ordering cost for product type 𝑝 

in period 𝑡 (IDR). 

𝐻𝑡,𝑝 : Holding cost for product type 𝑝 in 

period 𝑡 (IDR). 

𝐼𝑡,𝑝 : The inventory level for product 

type 𝑝  at the end of period 𝑡 
(units). 

𝑈𝑡,𝑝 : Return cost for product type 𝑝 in 

period 𝑡 (IDR). 

𝑁𝑡,𝑝 : Excess inventory cost for product 

type 𝑝 in period 𝑡 (IDR). 

𝐼𝑡,𝑝
𝑣  : Excess inventory level for product 

type 𝑝 in period 𝑡 (units). 

𝐸𝑡,𝑝 : Estimated product return due to 

expiration for product type 𝑝  in 

period 𝑡 (units). 

𝐶𝐼𝑡,𝑝  : Perishable cost for inventory for 

product type 𝑝 in period 𝑡 (IDR). 

𝐷𝑡,𝑝 : Demand for product type 𝑝  in 

period 𝑡 (units). 

𝐾 𝑝 : Inventory level constraint for 

product type 𝑝 (units). 

𝑃𝑟,𝑡−𝑓,𝑝 : Probability of the product being 

returned due to expiration at the 

last 𝑓 days. 

𝐺𝑝 : The perishable rate during 

inventory (percentage).  

Manufacturer Distributor Retailer 

Submit Order 

Send goods  

Submit Order 

Send goods 

Demand 

Historical return 

products 

Order Quantity 

Perishable rate due to inventory 
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𝑋𝑝 : Deterioration rate of quality 

(percentage). 

𝑂𝑡,𝑝 : Original purchasing cost from 

manufacturer to distributor for 

product type 𝑝 in period 𝑡 (IDR). 

𝐽𝑝 : Estimated duration to store 

products until they can be shipped 

to the next period (hours).  

𝐿𝑝 : Estimated duration for the product 

to expire (days). 
 

Independent Variable 

𝑄𝑡,𝑝 : Order quantity for product type 𝑝 

in period 𝑡 (units) 
 

Dependent Variables (binary variables) 

𝑠𝑡,𝑝
𝑣  : 1, if end inventory level exceeds the 

inventory level constraint for 

product type 𝑝  in period 𝑡 , 0, 

otherwise. 

𝑌𝑡,𝑝 : 1, if there is a number of products 

ordered for product type 𝑝 in period 

𝑡, 0, otherwise. 

𝑍𝑡,𝑝 : 1 if there are inventories for product 

type 𝑝  at the end of period 𝑡 , 0, 

otherwise. 

𝑇𝐶  : Total expected costs. 

 

Due to the complexities of the model, the 

following assumptions are: 

a. The demands for products are known and 

dynamic over the planning period. 

b. Shortages are not allowed - demand must be 

fully satisfied. 

c. There are no quantity discounts. 

d. The processing costs for manufacturing the 

products are fixed over the planning period, 

except for return costs, which depend on a 

fluctuating return rate. 

e. There are no transportation costs assumed for 

returning defective/unsold products 

 

2.3. Mathematical model 

The lot sizing problem for perishable 

products is formulated as a multi-period, multi-

product model. This paper proposes an order 

planning methodology that considers the con-

straints imposed by post-delivery product degra-

dation and storage degradation, as described in 

section 2.1. Therefore, perishability becomes 

essential in the distributor's decision to determine 

the optimal order. The total expected cost (𝑇𝐶) of 

the lot sizing model is derived from the ordering, 

inventory, excess inventory, return, and perishable 

costs due to inventory as formulated as follows: 
 

Min TC =∑∑(𝐴𝑡,𝑝𝑌𝑡,𝑝 +𝐻𝑡,𝑝𝐼𝑡,𝑝

𝑃

𝑝=1

𝑇

𝑡=1

+ 𝑁𝑡,𝑝𝐼𝑡,𝑝
𝑣 𝑠𝑡,𝑝

𝑣 + 𝑈𝑡,𝑝𝐸𝑡,𝑝
+ 𝐼𝑡,𝑝𝐶𝐼𝑡,𝑝𝑍𝑡,𝑝) 

(1) 

Subject to:  

𝐼𝑡,𝑝 = 𝑄𝑡,𝑝 + 𝐼𝑡−1,𝑝 − 𝐷𝑡,𝑝 
∀𝑡∈ 𝑇, 
∀𝑝∈ 𝑃. 

(2) 

𝐼𝑡,𝑝
𝑣 = 𝐼𝑡,𝑝 − 𝐾𝑝 

∀𝑡∈ 𝑇, 
∀𝑝∈ 𝑃 

(3) 

𝐸𝑡,𝑝 =
∑ 𝐷𝑡,𝑝
𝑇
𝑡=1

∑ 𝑃𝑟𝑡−𝑓,𝑝
𝑇−𝑓
𝑡−𝑓

𝐷𝑡,𝑝 
∀𝑡∈ 𝑇, 
∀𝑝∈ 𝑃 

(4) 

𝑍𝑡,𝑝 = {
1,
0,
if 𝐼𝑡,𝑝 > 0,

otherwise
 

∀𝑡∈ 𝑇, 
∀𝑝∈ 𝑃 

(5) 

𝐶𝐼𝑡,𝑝 = (100% − 𝐺𝑝)𝑂𝑡,𝑝  
∀𝑡∈ 𝑇, 
∀𝑝∈ 𝑃 

(6) 

𝐺𝑝 = 100%− (
𝑋𝑝𝐽𝑝

24
) ∀𝑝∈ 𝑃 (7) 

𝑋𝑝 =
100%

𝐿𝑝
 ∀𝑝∈ 𝑃 (8) 

𝑌𝑡,𝑝 ∈  {0,1} 
∀𝑡∈ 𝑇, 
∀𝑝∈ 𝑃. 

(9) 

𝑠𝑡,𝑝
𝑣 = {

1,
0,
if 𝐼𝑡,𝑝 > 𝐾𝑝
otherwise

 
∀𝑡∈ 𝑇, 
∀𝑝∈ 𝑃. 

(10) 

𝑍𝑡,𝑝 ∈  {0,1} 
∀𝑡∈ 𝑇, 
∀𝑝∈ 𝑃. 

(11) 

𝑄𝑡,𝑝, 𝐼𝑡,𝑝  ≥ 0 
∀𝑡∈ 𝑇, 
∀𝑝∈ 𝑃. 

(12) 

 

The objective function (1) minimizes the 

total expected cost of the ordering, inventory, 

excess inventory, return, and perishable costs due 

to inventory. Constraints (2) and (3) are, respecti-

vely, the inventory level and excess inventory 

level. To incorporate the deterioration, constraint 

(4) is the estimated product return due to expira-

tion, while constraint (6) is the perishable cost for 

inventory. Then, constraint (7) is the imperishable 

rate during inventory, while constraint (8) imposes 

the deterioration rate of quality. In addition, 

constraint (5), (9), (10), and (11) define the binary 

variable, and constraint (12) ensures that the order 

quantity and the inventory level are non-negative.  

Based on the constraints given in Eq. (7) 

and Eq. (8), perishability refers to the charac-

teristics of products that deteriorate or degrade 

over time. In particular, it is influenced by two key 

factors: the rate of perishability during storage, 

http://dx.doi.org/10.30656/jsmi.v7i2.7172


Jurnal Sistem dan Manajemen Industri Vol 7 No 1 December 2023, 139-154 

 

144  http://dx.doi.org/10.30656/jsmi.v7i2.7172      

 

which is denoted by Eq. (7), and the rate of quality 

deterioration, which is described by Eq. (8). 

Consequently, product storage has a considerable 

influence on the perishability rate. Furthermore, 

the rate at which the quality of the product 

deteriorates is also an important function related 

to the product's expiry date 
 

2.4. Solution approach 

Global optimization issues have been solved 

using metaheuristics in various engineering and 

scientific domains. Some algorithms are employ-

ed, such as particle swarm optimization [23], 

firefly algorithm [24], GA, etc. Due to its simple 

logic and precise search capabilities for pursuing 

global optimization, GA are a well-known and 

commonly utilized intelligent search method. This 

algorithm solves various optimization problems 

[16], [25]–[30], including lot sizing problems 

[20], [31]–[35], and transportation [36]. Lot sizing 

problems involve deciding how many products to 

order each period to minimize total inventory 

costs.  
 

2.4.1. Initial population 

This step concerns generating a chromo-

some randomly. The population (PoP) represents 

the various potential solutions of order quantity. 

The term "chromosome" refers to a fundamental 

concept borrowed from GA, representing a 

potential solution. Expressly, the chromosome in 

this study signifies a structured representation 

denoting the ordering quantity of product 𝑝 during 

period 𝑡 (Fig. 2).  
 

[

𝑄1,1 𝑄2,1 ⋯ 𝑄𝑇,1
⋮ ⋱ ⋮

𝑄1,𝑃 𝑄2,𝑃 ⋯ 𝑄𝑇,𝑃

] 

 

Fig. 2. The chromosome 
 

2.4.2. Evaluation 

A fitness value, which is the value of the 

objective function, must be assigned for a chromo-

some as soon as it is created when GA is used to 

solve an optimization problem. Some generated 

chromosomes, however, might not be practical 

due to limitations in the model provided by 

constraint (12). Even though there are several 

approaches in the literature (such as the penalty 

policy) to handle infeasible solutions Gen [22], 

this research has chosen to generate only feasible 

solutions due to the scale of the model in 

constraint (12). In other words, a chromosome that 

cannot be feasibly produced will be eliminated 

from the population. To do so, we develop a 

fitness function that incorporates a penalty policy 

to handle hard constraints (13) as formulated 

below: 
 

𝑠𝑡,𝑝
𝑠 = {

1𝑥10000000,
0,

if 𝐼𝑡,𝑝 < 0 

otherwise
 (13) 

 

where 𝑠𝑡,𝑝
𝑠  is the cost of the shortage inventory 

level determined based on the number of binaries 

at the time of the shortage in each period, which is 

then multiplied by the stepping value (10000000). 

Then, the fitness function (FF) is as follows 
 

𝐹𝐹 =

{
 

 
1

∑ ∑ 𝑠𝑡,𝑝
𝑠𝑃

𝑝=1
𝑇
𝑡=1

100

1

𝑇𝐶
1000

, if 𝑠𝑡,𝑝
𝑠 > 0

if 𝑠𝑡,𝑝
𝑠 = 0

 (14) 

 

The formula 
1

∑ ∑ 𝑠𝑡,𝑝
𝑠𝑃

𝑝=1
𝑇
𝑡=1

100, signifies the 

first step to eliminate the GA solution in the infea-

sible area. While formula 
1

𝑇𝐶
1000 is used when 

the state of the infeasible area has been resolved 

so that the feasible GA solution starts at a higher 

fitness value. Thus, Eq. (14) aims to maximize the 

fitness value; the higher the fitness value, the 

lower the total costs. 

 

2.4.3. Crossover 

Chromosome pairs must be mated to produce 

children during a crossover phase, c. To do this, 

we randomly choose a pair of chromosomes with 

probability (Probability of crossover, 𝑃𝑐) from the 

Generation. One-point, two-point, multiple-point, 

and uniform crossover operators are just a few of 

the many varieties available. The one-point 

crossover operator used in this study operates as 

follows: Pick a random crossing point, split the 

parents at this location, and then exchange the tails 

to produce children. Fig. 3 presents graphical re-

presentations for the crossover operation for the 

order quantity vector with five periods in a 

product. A similar approach can be taken for 

another product vector. 
 

Parents 
[231 222 431    ↓ 156 124] 
[125 595 214     ↓ 421 149] 

 

Offspring 
 

[231 222 431    (421 149)] 

[125 595 214    (156 124)] 
 

 

Fig. 3. An example of crossover operations 
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2.4.4. Mutation 

Some child chromosomes may undergo 

mutation to introduce variation in the population 

and prevent premature convergence to a sub-

optimal solution. Mutation involves random 

changes (probability of mutation, 𝑃𝑚) to the genes 

in a chromosome (Fig. 4) for the mutation opera-

tors of order quantity. The mutation procedure of 

the algorithm uses the uniform operator [36], [37]. 
 

𝑄 [231 (222) 431    (156) 124] 
 

↓ 
 

𝑄 [231 (156) 431    (222) 124] 
 

Fig. 4.  An example of mutation operations 

 

2.4.5. Selection 

Chromosomes with higher fitness are more 

likely to be selected as the next Generation's 

parents. Selection methods such as elitist, roulette 

or tournament selection can be used to select the 

chromosomes to be inherited. Moreover, this 

research employed an elitist strategy.  

 

2.4.6. Stopping criteria 

The final step in a GA technique is to 

determine when the algorithm should terminate 

for an optimal solution. Properly defining 

stopping criteria is critical to avoid unnecessary 

computation and resources. We halt our study 

after 750 and 1000 generations (𝐺𝑛). GA has the 

flexibility to handle complex optimization 

problems, including lot sizing problems. How-

ever, parameters of GA, such as population size, 

crossover probability, and mutation probability, 

must be carefully set to obtain satisfactory results. 

 

3. RESULTS AND DISCUSSION 

3.1 Experimental results 

This section discusses important obser-

vations regarding order planning, total cost and 

decisions regarding orders in the context of a 

distributor purchasing perishable products (such 

as bread) over a given period of time, considering 

the return and perishability rates. In addition, a 

numerical example using real case data was used 

to examine the impact of return and perishability 

rates on a distributor's order planning over 

different time periods and products (Table 1 and 

Table 2).  

In order to carry out an experimental analysis, 

the proposed lot-sizing model was modelled using 

Microsoft Excel integrated with a GA add-in, 

namely GeneHunter® software. All calculations 

were then performed on an Intel(R) Core(TM) i3-

1115G4 processor at 3.0 GHz with up to 8 GB of 

RAM.  
 

Table 1. Demand per each product 
 

Demand 

per 

Product 

(𝑫𝒑) 

Period (𝒕) 

1 2 3 4 5 6 7 

𝐷1 116 94 55 110 62 87 103 

𝐷2 116 103 61 72 65 79 101 

𝐷3 73 68 59 39 61 59 86 

𝐷4 106 77 63 70 99 69 80 
 

Table 2. Parameter values 
 

Parameter 
Product 

1 2 3 4 

𝐴𝑡,𝑝 75000 50000 60000 80000 

𝐻𝑡,𝑝 1500 500 1000 1750 

𝑈𝑡,𝑝 10800 3600 10500 9000 

𝑁𝑡,𝑝 1500 500 1000 1750 

𝐾 𝑝 10 15 10 10 

𝐽
𝑝
 16 16 16 16 

𝐿𝑝 8 8 8 6 

 

This investigation considers one distributor 

ordering various bread products from the supplier. 

The proposed model, formulated in this study, is 

then applied to an actual business scenario 

involving a bread company in Yogyakarta. Rele-

vant parameters were derived using historical 

data, and the mathematical model was developed 

and implemented using a spreadsheet. Given the 

complexity of the model, GA was used for 

optimization purposes.  

This research presents an innovative experi-

mental approach to designing lot sizing planning 

strategies using GA. GA is adopted as a powerful 

optimization tool capable of handling the complex 

challenge of determining the most optimal lot size 

in a supply chain context. To analyze and optimize 

the performance of order planning, we have 

explored a wide range of GA parameters, forming 

12 combinations of GA parameter values (Table 3 

and Table 4). The parameter values include 

population with values of 80, 90, 100, 125, 140, 

and 150, crossover with values of 0.65, 0.75, 0.80, 

0.90, and 0.85, and mutation with values of 0.02, 
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0.05, 0.01, 0.03, 0.04, and 0.025. In addition, we 

also consider generations with values of 750 and 

1000 as key factors in measuring efficiency. 

This experiment is particularly important as 

it refers to the importance of optimal GA 

parameter settings in achieving the most accurate 

and efficient solution. By conducting various tests 

and analyses on combinations of these parameters, 

this research provides an in-depth understanding 

of how GA parameters can affect the outcome of 

lot size planning. In addition, involving the 

computational time factor in this research ensures 

that the resulting solution is also practical in its 

application. 

Based on the results in Table 3 and Table 4, 

one of the key aspects of the GA capabilities in 

this study is its ability to optimize the fitness 

function to maximize the desired value. In the 

context of lot sizing and planning, the higher the 

value of the feasibility function, the lower the cost. 

It means that GA can help find the most econo-

mical and efficient solution for the supply chain. 

In addition, GA also stands out in its ability 

to utilize penalty functions. This penalty function 

is a control mechanism that prevents violations of 

hard constraints, such as shortages in the order 

planning process. By applying the concept of 

penalty functions, GAs can intelligently avoid 

solutions that violate these "hard constraints" as 

formulated in Eq. (14).

Table 3. The fitness function generated by a test run of the GA 

No 
GA parameter Fitness 

𝑵 𝑷𝒄 𝑷𝒎 𝑮𝒏 1 2 3 4 5 

1 80 0.65 0.02 750 6,166E-05 6,085E-05 6,206E-05 6,25E-05 6,123E-05 

2 90 0.75 0.05 750 6,487E-05 6,217E-05 6,026E-05 6,675E-05 6,22E-05 

3 100 0.80 0.01 750 6,661E-05 6,458E-05 6,335E-05 6,596E-05 6,958E-05 

4 125 0.9 0.03 750 6,431E-05 6,284E-05 6,04E-05 6,854E-05 6,473E-05 

5 140 0.85 0.04 750 5,844E-05 6,691E-05 6,208E-05 6,268E-05 5,944E-05 

6 150 0.90 0.025 750 6,254E-05 6,501E-05 6,964E-05 6,227E-05 6,103E-05 

7 80 0.65 0.02 1000 6,07E-05 6,232E-05 6,151E-05 6,732E-05 5,931E-05 

8 90 0.75 0.05 1000 6,018E-05 6,38E-05 6,343E-05 6,26E-05 6,278E-05 

9 100 0.80 0.01 1000 6,72E-05 6,64E-05 6,69E-05 6,47E-05 5,78E-05 

10 125 0.9 0.03 1000 6,52E-05 6,12E-05 6,81E-05 6,52E-05 6,58E-05 

11 140 0.85 0.04 1000 5,894E-05 6,04E-05 6,554E-05 6,341E-05 6,456E-05 

12 150 0.90 0.025 1000 6,369E-05 6,39E-05 6,531E-05 6,704E-05 14941725 

Note: 𝑃𝑜𝑃=Population; 𝑃𝑐=Probability of crossover; 𝑃𝑚= Probability of mutation; 𝐺𝑛=Generation. 
 

Table 4. Total costs generated by a test run of the GA 

No 
GA parameter Total costs (IDR) 

𝑵 𝑷𝒄 𝑷𝒎 𝑮𝒏 1 2 3 4 5 

1 80 0.65 0.02 750 16,217,841.67 16,434,250.00 16,113,391.67 16,000,550.00 16,330,733.33 

2 90 0.75 0.05 750 15,415,550.00 16,085,066.67 16,595,666.67 14,982,250.00 16,077,650.00 

3 100 0.80 0.01 750 15,013,775.00 15,484,816.67 15,784,900.00 15,161,550.00 14,372,708.33 

4 125 0.9 0.03 750 15,550,725.00 15,914,566.67 16,556,950.00 14,589,058.33. 15,447,916.67 

5 140 0.85 0.04 750 17,111,666.67 14,946,491.67 16,108,758.33 15,953,008.33 16,822,425.00 

6 150 0.90 0.025 750 15,988,833.33 15,383,208.33 14,359,333.33 16,057,941.67 16,384,741.67 

7 80 0.65 0.02 1000 16,473,433.33 16,046,958.33 16,256,558.33 14,854,425.00 16,861,750.00 

8 90 0.75 0.05 1000 16,617,208.33 15,674,100.00 15,764,625.00 15,974,741.67 15,928,233.33 

9 100 0.80 0.01 1000 14,881,100.00 15,067,067.00 14,943,392.00 15,466,817.00 17,287,275.00 

10 125 0.9 0.03 1000 15,342,483.00 16,332,017.00 14,674,608.00 15,329,783.00 15,204,842.00 

11 140 0.85 0.04 1000 16,965,250.00 16,557,133.33 15,257,983.33 15,770,258.33 15,490,508.33 

12 150 0.90 0.025 1000 15,699,891.67 15,650,225.00 15,311,800.00 14,917,258.33 14,941,725.00 

Note: 𝑃𝑜𝑃=Population; 𝑃𝑐=probability of crossover; 𝑃𝑚= Probability of mutation; 𝐺𝑛=Generation. 
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This ensures that the resulting solution is not 

only cost-optimal but also satisfies all relevant 

planning criteria and constraints. Penalty func-

tions in GA prevent hard constraints, enhance 

solution robustness, and boost decision-making 

reliability. Therefore, incorporating penalty func-

tions turns GAs into sophisticated decision-

making tools that navigate complex constraints 

while striving for an optimal solution. 

From the experimental results (Table 3 and 

Table 4), it can be observed that the sixth iteration, 

which was replicated three times, showed optimal 

performance in terms of cost. In this iteration, a 

fitness value of 6.9641E-05 was achieved, which 

further contributed to calculating the total cost of 

14,359,333.33. The details of the search process to 

achieve this fitness value (Fig. 5), with the 

achievement occurring in the 744th Generation.  

The results of this analysis indicate the 

potential to improve the search results for a more 

optimal solution in terms of fitness value, given 

that the termination of iterations was implemented 

at the 750th Generation. Although this experiment 

has designed iteration-stopping endpoints at the 

750th and 1000th generations, further consideration 

is needed to optimize the fitness value achieve-

ment through modifications to the termination 

method. Moving forward, the results of a near or 

optimal solution of order quantity determination 

derived by a GA can represent a realistic and 

complex situation in supply chain management 

(Fig. 6). 

 

Fig. 5. GA search process in the 6th experiment of the 3rd replication 
 

 

Fig. 6. The near or optimal solution of order quantity generated by GA for each product ordered by 

distributors to a supplier to meet customer demand 
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The costs incurred in this scenario result from 

the decisions made regarding the fluctuating order 

quantities resulting from dynamic interactions 

between distributors and suppliers to meet the 

diverse product requirements of four different 

customers. The effects of these decisions signi-

ficantly impact the inventory level at the 

distributor stage (Fig. 7), with changes in the level 

of inventory maintained, as well as their influence 

on the calculation of relevant costs. These com-

plex dynamics comprehensively illustrate how 

fluctuations in the near-optimal order quantity, 

resulting from the GA approach, reflect the real 

dynamics and unique characteristics of the 

operational environment in a complex distribution 

system.  

The inventory graph (Fig. 7) depicts a situa-

tion where, although the costs incurred reached a 

minimum, the order quantity solution implement-

ed resulted in an ending inventory that exceeded 

the maximum capacity. It indicates that although 

efforts to minimize costs have been successful, 

increasing inventory capacity needs to be further 

considered to avoid negative impacts on distri-

bution operations. Increasing inventory capacity 

to improve operational efficiency can significantly 

impact perishable products. While increased 

inventory capacity may reduce the risk of stock-

outs and increase product availability, at the same 

time, products that have a limited shelf life or are 

sensitive to environmental conditions may experi-

ence a higher risk of damage due to the length of 

storage time. 

A deeper analysis of the impact of order 

quantity decisions on total return and perishable 

costs (Fig. 8), reveals a fundamental aspect of 

modern supply chain management. The potential 

variability in return rates in different periods and 

the intrinsic characteristics of products that exhibit 

their susceptibility to changing conditions during 

the storage process underlies this interpretation.  

The complex interaction between these 

factors results in a pattern of cost dynamics that 

reflects the complexity of the calculations behind 

the decision-making regarding order quantity. 

Return rates that reach significant values directly 

drive the escalation of cost implications, in line 

with the escalation of the number of returns that 

occur. Furthermore, the perishable nature of goods 

exacerbates this cost impact and the increased risk 

of financial loss caused by potential product 

damage. 
 

  

3.1. Product-1 
 

(b) Product-2 

  

(c) Product-3 (d) Product-4 
 

Fig. 7. Inventory charts for each product ordered from distributors to suppliers to fulfil customer 

demand  
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Fig. 8. Total return costs and perishable costs per period per product 

 

In the context of supply chain management 

that emphasizes cost efficiency, a deep under-

standing of this dual influence emerges as a central 

element. Gaining a thorough insight into the corre-

lation between return rate variations and perisha-

bility considerations creates a valuable foundation 

for effective decision-making. Not only does it 

serve to achieve optimal resource allocation, but it 

also formulates strategies focused on mitigating 

costs arising from return activities and mana-

gement of products that tend to be fragile. 

Indeed, combining these comprehensive 

analyses has far-reaching implications in linking 

operational decisions with the company's long-

term goals, including developing strategies to 

minimize total costs to support sustainable supply 

chain efficiency and viability. Therefore, main-

taining the right balance between the variability of 

returns and consideration of perishability is 

essential in organizing high-quality decision-

making 

 

3.2. Managerial and theoretical implications 

3.2.1. Managerial implications 

Managing products with an expiry date, 

especially bread products, has significant mana-

gerial implications for distributors. First of all, 

distributors need to develop an efficient inventory 

management strategy. It involves closely moni-

toring the level of demand for bread products, 

seasonal patterns, and past sales trends. By deeply 

understanding customer behaviors and market 

trends, distributors can better plan orders, avoid 

excess inventory that can result in wastage, and 

reduce the risk of stock-outs that can be detri-

mental to business reputation.  

Secondly, close collaboration with suppliers 

and bread manufacturers is crucial. Distributors 

need to ensure that the supply chain runs smoothly 

to avoid delays in product delivery. In this context, 

good communication with suppliers is important 

to anticipate obstacles that may arise, such as 

production or distribution problems. Providing 

alternative suppliers can also be a wise step to 

reduce the risk of supply disruptions. In addition, 

a long-term approach with suppliers in terms of 

production planning and capacity enhancement 

can also help overcome any fluctuations in 

demand that may occur. 

Finally, implementing technology and 

information systems can provide significant bene-

fits in dealing with the challenges of perishable 

products. Using sophisticated, data-driven inven-

tory management systems allows distributors to 

track bread inventory projects accurately and 

respond quickly to changes in demand. Adopting 

the right technology allows distributors to 

automate order processes, minimize human errors, 

and improve overall operational efficiency. In 

addition, using technology can also help monitor 

optimal storage conditions to maintain the quality 

of bread products and extend their shelf life. 

Managing perishable products, especially 

bread products, requires distributors to adopt a 

strategic approach to inventory management, 

collaboration with suppliers, and proper 
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utilization of technology. By combining these 

factors, distributors can overcome the challenges 

arising from the perishable nature of the products 

and keep the business running smoothly while 

meeting customer demands well. 

  

3.2.2. Theoretical implications 

In a theoretical context, the challenge of 

managing perishable products such as bread 

products has relevant implications for supply 

chain management and inventory theory. Firstly, 

demand and return rate forecasting is becoming 

increasingly important. Distributors must apply 

appropriate forecasting methods to accurately 

predict all bread products' demand and return 

rates. A forecasting model that integrates sales 

trends, demand variability, and product deterio-

ration rate will help distributors plan orders more 

efficiently, reduce the risk of overstock or under-

stock, and improve operational performance. 

Secondly, inventory theory also plays an 

important role in dealing with products with 

perishable properties. Distributors must consider 

the trade-off between storage costs and shortage 

and overstock costs. Inventory models such as lot 

sizing models extended to include the perishable 

aspect will help determine the optimal size of 

orders and appropriate ordering intervals. Using 

these concepts can help reduce excess inventory, 

increase product availability, and optimize 

production and delivery times to maintain product 

freshness in the context of perishable bread 

products. 

Overall, perishable products such as bread 

provide valuable theoretical contributions to 

developing inventory theory and coordination 

concepts in supply chain management. Distri-

butors must apply and combine these concepts 

judiciously to face the challenges arising from the 

product's perishable nature and maintain a balance 

between operational efficiency and customer 

satisfaction 

 

3.2.3. Integration with previous research 

The proposed lot sizing models show a 

significant shift compared to previous models. 

One of the main differences lies in the approach to 

demand dynamics. Current models consider 

dynamic demand, accommodating more realistic 

fluctuations in customer demand. The study by Li 

et al. [38] suggested that modelling dynamic 

demand can lead to more accurate results in stock 

planning. On the other hand, previous models 

often rely on assumptions of fixed or very slowly 

changing demand [39]. 

When comparing current lot sizing models 

with classical models such as Economic Order 

Quantity (EOQ), another difference arises in the 

complexity of the calculations. EOQ models are 

generally based on simple assumptions, such as 

fixed ordering, storage costs, and constant demand 

[40]. However, research by Singh and Pattanayak 
[39] showed that the EOQ model can be extended 

by considering dynamic demand and evolving 

storage costs. Alternatively, the current model 

applies a more comprehensive approach by consi-

dering more complicated demand dynamics, total 

ordering, and inventory costs that can evolve. 

Research by He et al. [40] showed that consider-

ing additional factors such as perishable rate can 

improve stock planning for products prone to 

spoilage. 

While there are significant differences 

between the current and previous models, there are 

important points of similarity. Both models 

remain focused on the main objective of stock 

planning, which is to ensure the availability of the 

right stock at the right time. In this regard, both 

consider careful order planning to avoid the risk of 

under-stocking or over-stocking. Thus, even 

though the current model has more sophisticated 

components, such as more complex demand 

dynamics and perishable rates, the core of stock 

planning remains focused on efficient and 

effective inventory management. 

It is also important to note that since the 

current stock planning model involves compli-

cated and complex calculations, meta-heuristic 

methods such as GAs are used to search for the 

near or optimal solution in determining the order 

quantity. This technique illustrates a higher level 

of complexity in the current stock planning 

process, which may be necessary to deal with 

greater complexity in a constantly changing 

business environment. 

 

4. CONCLUSION 

This research is based on an empirical 

investigation of perishable products, emphasizing 

order planning for bread products. Beyond the 

challenge of demand uncertainty, this research 

investigates the complexities of managing 

perishable products. These complexities include 

varying shelf-life ranges across products, 

uncertain return rates, considerations spanning 

multiple periods, dynamic fluctuations in demand, 
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and the complexity required in organizing 

inventory from the manufacturer to the distributor 

and ultimately to the end retailer. This research 

presents an innovative methodology that focuses 

on lot size optimization, especially on the unique 

characteristics of perishable products, thus contri-

buting substantially to the evolution of inventory 

direction in highly complicated industrial environ-

ments. In addition, this research dedicates sub-

stantial attention to pragmatic and consequential 

issues, especially those covering the inherent 

volatility of return rates and deterioration rates at 

the time of storage, which present challenges to 

manufacturers and distributors. Remarkably, this 

particular aspect of real-world systems has not 

been thoroughly investigated until now, making it 

an important step toward developing interesting 

applications.  

This research aims to reduce the total 

ordering cost by optimizing the order quantity for 

perishable products, which includes multi-product 

and multi-period considerations. Due to the 

complexity of the problem, GA is proposed by 

experimenting with the combination of several 

parameters, namely crossover, mutation, populati-

on, and Generation. These experiments were 

conducted to maximize the minimal planning 

cost's feasibility value. The optimal or near-

optimal order quantity generated by GA greatly 

affects the total cost, but the solution is difficult to 

know the pattern due to the dynamic nature of 

demand. In addition, the determination of the 

order quantity is affected by the return and damage 

rates. However, experiments using GA have 

successfully achieved the intended value to solve 

the perishable product problem. This study contri-

butes to helping distributors effectively minimize 

wastage arising from expired or perishable 

products while simultaneously meeting customer 

demand more efficiently. For future research, 

applying inventory models with discounts (e.g. lot 

sizing models with discounts related to order 

quantities) can also be a relevant alternative in the 

face of demand fluctuations associated with bread 

products. It aims to determine the effect of 

discounts on sales acceleration in avoiding the 

occurrence of return products. In addition, some 

metaheuristic methods, such as ant colony 

optimization, simulated annealing, and particle 

swarm optimization, can be used to compare with 

the current results regarding performance and 

computation time. Then, larger problem scale can 

be explored for future works. 
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