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Increasing energy consumption has faced challenges and pressures for 

modern manufacturing operations. The production sector accounts for half 

of the world's total energy consumption. Reducing idle machine time by em-

ploying No-Idle Permutation Flow Shop Scheduling (NIPFSP) is one of the 

best decisions for reducing energy consumption. This article modifies one 

of the energy consumption-solving algorithms,  the Aquila Optimizer (AO) 

algorithm. This research contributes by 1) proposing novel AO procedures 

for solving energy consumption problems with NIPFSP and 2) expanding 

the literature on metaheuristic algorithms that can solve energy consumption 

problems with NIPFSP. To analyze whether the AO algorithm is optimal, 

we compared by using the Grey Wolf Optimizer (GWO) algorithm. It com-

pares these two algorithms to tackle the problem of energy consumption by 

testing four distinct problems. Comparison of the AO and GWO algorithm 

is thirty times for each case for each population and iteration. The outcome 

of comparing the two algorithms is using a t-test on independent samples 

and ECR. In all case studies, the results demonstrate that the AO algorithm 

has a lower energy consumption value than GWO. The AO algorithm is 

therefore recommended for minimizing energy consumption because it can 

produce more optimal results than the comparison algorithm. 
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1. INTRODUCTION 

The manufacturing sector faces challenges 

and pressures due to rising energy consumption 

and production's negative environmental impact. 

Globally, production consumes 50% of all energy 

[1] and is projected to increase to 45% by 2023 

[2]. Germany has the highest energy consumption 

rates, with manufacturing accounting for 47% of 

total energy consumption [3]. About 34% of all 

energy consumed in the United States is consumed 

by the industrial sector, with electricity accounting 

for 3.4% [4]. China consumed 70.82 percent of the 

world's energy in 2011, with the industrial sector 

consuming 81.32 percent [5] and the transporta-

tion sector consuming 30 percent [6]. As a result 

of high fuel costs and harmful environmental 

effects such as global warming and CO2 emissi-

ons, large energy consumption is a major issue for 

manufacturing companies [7]. As a result of the 

industrial sector's high energy consumption, 

manufacturing businesses are responsible for the 

surrounding environment [8]. They demand a 
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production method that demonstrates efforts to 

reduce environmental impact [9]. According to 

one study, environmental management and green 

principles are applied to manufacturing businesses 

[10] to reduce energy consumption, which in turn 

lessens ecological impacts [11], [12]. 

Other research indicates that reducing 

machine idle or no-idle time is one method for 

reducing energy consumption [13] (i) to reduce 

costs so that human resources, capital, and natural 

resources can be used for other purposes; (ii) to 

relieve pressure on petroleum supplies as we enter 

the 21st century; (iii) to reduce the rate of 

greenhouse gas emissions, thereby reducing the 

need for drastic measures in this area; and (iv) to 

pave the way for the implementation of alter-

natives to fossil fuels [14]. Several studies have 

conducted proofs regarding the minimization of 

energy consumption by employing the No-Idle 

Permutation Flow Shop Scheduling Problem 

(NIPFSP) [15], specifically by employing the Ite-

rated Greedy Algorithm [16], the Tabu search 

(TS) and the Genetic Algorithm (GA) [17], the 

Iterated reference greedy algorithm [18], the In-

vasive weed optimization algorithm [19], Meme-

tic algorithm with node and edge histogram [20], 

collaborative optimization algorithm [21], novel 

differential evolution algorithm [22], discrete arti-

ficial bee colony algorithm [23], a hybrid discrete 

particle swarm optimization algorithm [24], a 

hybrid discrete differential evolution algorithm 

[25], Hybrid Grasshopper Optimization Algo-

rithm [26], the hybrid ant lion optimization flow 

shop [27]. Some of these studies specifically 

discuss No-idle, a research Al-Imron et al. [28] 

that aims to minimize energy consumption using 

the Grey Wolf Optimizer Algorithm. Some studies 

also analyze Flow Shop Scheduling by using a 

multi-operator hybrid genetic algorithm [29], 

multiobjective distributed reentrant permutation 

flow shop scheduling with sequence-dependent 

setup time [30], A decision support system for 

road freight transportation route selection with 

new fuzzy numbers [31], A systematic literature 

review on energy-efficient hybrid flow shop sche-

duling [32], A novel hybrid Archimedes optimiza-

tion algorithm for energy-efficient hybrid flow 

shop scheduling [5], and design of decision 

support system for road freight transportation 

routing using multilayer zero-one goal program-

ming [33]. Previous research that addresses 

NIPFSP issues is presented in Table 1. 

In this study, a comparison will be made 

between the no-idle flow shop scheduling problem 

and the previously studied the Grey Wolf 

Optimizer (GWO) algorithm [28] as a compar-

ison. The Aquila Optimizer (AO) offers advan-

tages such as  fast convergence speed, high search 

efficiency, and a simple structure [34]. However, 

it has drawbacks, including slow convergence 

speed, limited local development ability, and 

decreasing population diversity. On the other 

hand, the GWO  excels in effective exploration 

and exploitation, versatility and adaptability, and 

can be improved through modifications [35]. 

Nonetheless, it is sensitive to parameter settings, 

may struggle with complex problems, and lacks a 

strong theoretical foundation. 

Numerous algorithms have been proposed to 

solve NIPFSP, as demonstrated by some research 

cited above. Many of these algorithms are inspired 

by animals' hunting and prey-searching behavior 

[32]. AO has been employed in several previous 

studies to address various problems. production 

forecasting [36], global optimization [37], ad-

vance feature extraction and selection [38], indus-

trial engineering optimizations problems [39], 

boosting covid-19 image classification [40], 

global optimization and constrained engineering 

problems [41], optimization of PID parameters 

[42], selecting effective features from medical 

data [43]. Therefore, the Aquila algorithm will be 

utilized in this study to solve energy consumption 

issues. However, no prior research on reducing 

energy consumption with the AO algorithm exists. 

Researchers propose the AO algorithm as an alter-

native strategy for reducing energy consumption 

in the NIPFSP case. AO is an algorithm proposed 

by simulating Aquila's behavior during hunting 

and displaying Aquila's hunting actions at each 

step [44]. Real-life applications are not the focus 

of this research, where real-life applications refer 

to articles with a multiobjective classification. 

Instead, this study focuses on energy consumption 

issues by proposing a new algorithm. This Aquila 

algorithm will be used to reduce manufacturing 

companies energy consumption during the 

production process.  

Consequently, this study aims to modify the 

AO algorithm to reduce NIPFSP energy consump-

tion. An optimal energy consumption value using 

the AO algorithm will be compared with the Grey 

Wolf Optimizer (GWO) algorithm [32]. Make 

span and energy consumption are the objective 

functions used in this research [34]. This study's 

findings will be compared to determine the most 
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efficient algorithm. This research contributes by 

1) proposing new AO procedures for solving 

energy consumption problems with NIPFSP and 

2) expanding the literature on metaheuristic 

algorithms that can solve energy consumption 

problems with NIPFSP 

 

Table 1. Literature review on NIPFSP  
 

Year Research Variants problems 

Classification method 

Procedure 

optimization 

H
eu

ri
st

ic
 

M
et

a
 

H
y

b
ri

d
 

E
x

a
ct

 

2007 Baraz and Mosheiov 

[45] 
𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- √ - - Greedy 

algorithm 

2007 Pan and Wang [24] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- √ - - Swarm 

optimization 

2008 Pan and Wang [22] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- √ - - Differential 

evolution 

algorithm 

2010 Ren et al. [46] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- √ - - Tabu search 

2011 Ren et al. [47] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- - √ - Hybrid tabu 

search 

2011 Tasgetiren et al. [48] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 ,𝑀𝑖𝑛 𝑇𝑎𝑟 

- √ - - Differential 

evolution 

algorithm 

2012 Deng and Gu [25] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- - √ - Hybrid discrete 

differential evo-

lution algorithm 

2013 Tasgetiren et al. [23] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 ,𝑀𝑖𝑛 𝑇𝑎𝑟 

- √ - - Artificial bee 

colony algorithm 

2013 Tasgetiren et al. [49] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- √ - - The general 

variable neigh-

borhood search 

algorithm 

2013 Wang and Li [50] 𝑁𝐼𝑃𝐹𝑆 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥,𝑀𝑖𝑛 𝑇𝑎𝑟 

- √ - - Shuffled frog 

leaping 

algorithm 

2014 Zhou et al. [19] 𝑁𝐹𝑆𝑃 / 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 - √ - - Invasive weed 

optimization 

algorithm 

2018 Ling-fang et al. [51] 𝐷𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- √ - - Two-stage 

memetic 

algorithm 

2019 Tasgetiren et al. [52] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- √ - - Variable iterated 

local search 

algorithm. 

2021 Li et al. [53] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- √ - - Adaptive iterated 

greedy algorithm 

2021 Cheng et al. [54] 𝑁𝐼𝑃𝐹𝑆𝑃 
/ 𝑀𝑖𝑛 𝐶𝑚𝑎𝑥 

- - √ - Hybrid terated 

greedy and local 

search 

procedure. 
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2. RESEARCH METHODS 

2.1. Assumptions, notation, and mathematical 

models 

The investigation makes use of several 

assumptions made by researchers. The following 

are the permutation no-idle flow shop timing 

presumptions [55]: (1) The m machines must 

process every one of the n jobs in the same 

sequence. (2) At 0, all processes are prepared for 

processing. (3) The processing start time for the 

first task on each machine must be delayed to 

comply with the no idle requirement. (4) Only one 

job can be processed on each machine at the 

moment, and only one can be processed on each 

machine at a given time. (5) Once the first task 

begins processing, it can only be stopped once the 

last job has finished processing. (6) Setup time is 

included in the job execution time. (7) Equipment 

may be kept active while a task is processed. The 

following formula is used in the problem [56]: 

i : job index 

j : machine index 

   𝐶𝑖,𝑗 
: completion time of the i job on the j  

machine 

𝐹𝑗 : completion time of the j machine 

𝑆𝑗 : j machine start time 

  𝐶𝑖,𝑗 
: completion time of the i job on the j 

machine 

 𝑝𝑖𝑗 : process time of the i job 

    𝐶𝑚𝑎𝑥 : make span value 

𝜑𝑗 
: energy consumption when the 

machine is idle 

𝜏𝑗 
: energy consumption when the i 

machine operates  

N : number of jobs 

M : number of machines 

TEC : total energy consumption 

𝑃𝑖𝑗 
: processing energy consumption on j 

machine 

𝜃𝑗 : waiting time on the j machine 

D  : permutations to avoid overlap 
 

Model of mixed integer programming 

(MIP) presents the mathematical formulation for 

minimizing energy consumption: 
 

Decision Variable  

𝑌𝑖𝑗𝑟 = {
1,         𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑎𝑡 𝑠𝑝𝑒𝑒𝑑 𝑟 𝑜𝑛 

𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑋𝑖𝑗𝑟 = {  
1,       𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑗𝑜𝑏 𝑜𝑓

 𝑗𝑜𝑏 𝑘 0, otherwise (𝑖˂𝑘)
 

 

Objective function: 

Min TEC    (1) 

Constraints : 

𝐶𝑖,1 ≥ ∑ 𝑃𝑖1 𝑌𝑖𝑙𝑟∀𝑖= 𝑙
𝑟=1  {1, . . , n}     (2) 

𝐶𝑖𝑗−𝐶𝑖,𝑗−1  ≥ ∑ 𝑃𝑖1 𝑌𝑖𝑙𝑟∀𝑗= 𝑙
𝑟=1 {2, . . , m}, 𝑖 =

 {2, . . , n}    (3) 

𝐶𝑖𝑗−𝐶𝑘𝑗 + 𝐷𝑋𝑖𝑘 ≥ ∑ 𝑃𝑖1 𝑌𝑖𝑙𝑟∀𝑗= 𝑙
𝑟=1 {1, . . , m}, 𝑖 =

{1, . . , n}, 𝑘 =  {1, . . , n}    (4) 

𝐶𝑖𝑗−𝐶𝑘𝑗 + 𝐷𝑋𝑖𝑘 ≤ 𝐷 − ∑ 𝑃𝑖1 𝑌𝑖𝑙𝑟∀𝑗= 𝑙
𝑟=1 {1, . . , m},

𝑖 = {1, . . , n}, 𝑘 =  {1, . . , n}    (5) 

𝐶𝑚𝑎𝑥  ≥  𝐶𝑖𝑚 ∀𝑖  =  {1, . . , n}    (6) 

∑ 𝑌𝑖𝑗𝑟
𝑙
𝑟=1 =  1∀𝑖  =  {1, . . , n}, j = {1, . . , m}c z     (7) 

𝑌𝑖𝑗𝑟 = 𝑌𝑖,𝑗+1,𝑟∀𝑖  =  {1, . . , n}, j = {1, . . , m}, r =

{1, . . , l}     (8) 

𝜃𝑗 = 𝐶𝑚𝑎𝑥 − ∑ ∑ 𝑃𝑖1 𝑌𝑖𝑙𝑟
𝑙
𝑟=1

𝑛
𝑖= 1 ∀𝑗  =  {1, . . , m}    (9) 

TEC =∑ ∑ ∑ 𝑃𝑖1 𝑌𝑖𝑙𝑟
𝑙
𝑟=1

𝑚
𝑗=1

𝑛
𝑖=1 𝑌𝑖𝑗𝑟 + ∑

𝜑𝑗𝜃𝑗 𝜏𝑗

60

𝑚
𝑗=1    (10) 

𝑆𝑗  ≤  𝐶𝑖𝑗  −  ∑ 𝑃𝑖1 𝑌𝑖𝑙𝑟∀𝑖= 𝑙
𝑟=1 {1, . . , n}, 𝑗 =

{1, . . , m}                           (11) 

𝐹𝑗  ≥  𝐶𝑖𝑗∀𝑖= {1, . . , n}, 𝑗 = {1, . . , m}  (12) 

𝐹𝑗  ≥  𝑆𝑗 + ∑ ∑ 𝑃𝑖1 𝑌𝑖𝑙𝑟
𝑙
𝑟=1

𝑛
𝑖= 1 ∀𝑖= {1, . . , n}, 𝑗 =

{1, . . , m}  (13) 
 

The TEC minimization goal function is a 

problem constraint (1). The second problem con-

straint is when the first machine finishes each task. 

The next operation will be carried out if the 

preceding operation has been processed, accord-

ing to problem constraint (3). The order of each 

task is defined by the problem restrictions (4) and 

(5). Calculating the make span satisfies problem 

restriction number six. Problem limitations (7) and 

(8) suggest that the same machine machining 

speed is used for all jobs. The idle period for each 

machine is constrained (9). There is no idle time 

between tasks, so idle time only occurs at the start 

and end of the delay. The calculation of total 

energy usage is shown in constraint (10). 

Constraints (11), (12), and (13) make sure that 

each machine is never idle in between tasks. 
 

2.2. Proposed algorithm 

2.2.1. Aquila optimizer (AO) algorithm 

Researchers have proposed AO algorithm 

to conserve energy. Aquila is one of the most well-

known raptors. Aquila is the most prevalent 

species of Aquila that disperses. All birds, 

including Aquila, are members of the Accipitridae 

family. Aquila is typically dark brown and has 

golden-brown feathers on its neck. Young 

members of this group of Aquila have predomi-

nantly white tails and typically faint white 
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markings on their wings. Aquila captures various 

prey, including rabbits, terns, marmots, squirrels, 

and other land animals, utilizing their speed, 

agility, strong legs, and large, sharp claws. 

Observable in nature are Aquila and their typical 

behavior. Due to their hunting prowess, Aquila is 

among the most extensively studied birds in the 

world. When hunting alone, male Aquilas capture 

significantly more prey. Aquila pursues squirrels, 

rabbits, and other animals with their speed and 

sharp claws. Even fully grown deer have been 

attacked by them in the past. The ground squirrel 

is Aquila's diet's next most important species. 

Aquila is a brilliant and skilled hunter who may be 

second only to humans [44]. Fig. 1,  Fig. 2, Fig. 3,   

Fig. 4, and Fig. 5 depict the assumptions and vari-

ous conditions of the AO. 

 
Fig. 1. The soaring behavior of Aquila is 

characterized by its vertical stoop [44] 

 
Fig. 2. Aquila exhibits contour flight behavior 

accompanied by short glide attacks [44] 

 

 
Fig. 3. The behavior of the AO involves a spiral 

shape [44] 

 
Fig. 4. Aquila demonstrates low flight behavior 

accompanied by slow descent attacks [44] 

 
Fig. 5. Aquila exhibits the behavior of walking 

and grabbing prey [44] 

 

The AO algorithm has eight stages [57]. The 

initial phase randomizes the parameters and 

population. The second step determines if the 

current iteration is greater than or equal to the 

maximum iteration. The final phase employs any 

cost function. In the fourth stage, the performance 

of each agent in the search space is evaluated. The 

fifth stage evaluates performance based on fitness 

values to determine the winner. The sixth stage 

modifies the parameters and average value. The 

seventh stage involves a condition check. If the 

condition is acceptable, it will fit again. The third 

and fourth methods will be utilized if the condition 

is false. The eighth stage of the Aquila optimi-

zation algorithm displays the optimal solution in 

four distinct ways.  

AO can address problem cases that are 

continuous in nature; however, this article focuses 

on applying AO to discrete problem cases. The 

pseudocode of AO has been adapted to handle 

discrete problem cases by incorporating the 

Largest Ranked Value (LRV) approach. The LRV 

method is commonly employed in research to 

ascertain the maximum value of a given dataset or 

variable. This technique entails organizing the 

data in ascending order and selecting the highest 

value as the outcome. 

The population value indicates the number of 

AOs in this article. The population value used in 

this research is referenced from several previous 
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articles that employed the Aquila algorithm. For 

example, Sasmal et al. [34]  conducted a study 

using a population of 50, while Lockwood and 

Cannon [36] used the largest population of 4000. 

Both studies demonstrated that the research with 

the largest population yielded more optimal 

results. Therefore, this research adopts a large 

population size, specifically 300 and 500 for each 

case. Additionally, the final criterion of this 

method involves iterations, specifically 500 and 

1000 iterations. Increasing the number of itera-

tions will lead to more optimal values. 

 

2.2.2. Initialization 

The AO algorithm's population-based ap-

proach begins with a population of potential 

solutions (X), as shown in equation (14), which 

are generated stochastically between the sche-

duling problem's upper bound (UB) and lower 

bound (LB). Each iteration selects as the appro-

ximate optimal solution the response that is by far 

the best.  
 

𝑋 =

[
 
 
 
 
 

𝑥1,1

𝑥2,1

…
⋮

𝑥𝑁−1,1

𝑥𝑁,1

      …       
…
…
⋮
…
…

 

𝑥1,𝑗

𝑥2,𝑗

𝑥𝑖,𝑗

⋮
𝑥𝑁−1,𝑗

𝑥𝑁,𝑗

      𝑥1,𝐷𝑖𝑚−1

…
…
⋮
…

   𝑥𝑁,𝐷𝑖𝑚−1

       𝑥1,𝐷𝑖𝑚

       𝑥2,𝐷𝑖𝑚

…
⋮

         𝑥𝑁−1,𝐷𝑖𝑚

   𝑥𝑁,𝐷𝑖𝑚 ]
 
 
 
 
 

(14) 

 

Where X represents the current collection of 

potential answers that were chosen at random 

using the equation (15), 𝑋𝑖  Represents the i 

solution's judgment value (position), N is the total 

potential solution (population), and Dim denotes 

the problem's dimensionality. Where a rand is a 

random number, 𝐿𝐵𝑗  Is the lower bound  j, and 

𝑈𝐵𝑗  is the upper bound of the scheduling 

problem. 
 

𝑋𝑖𝑗 = 𝑟𝑎𝑛𝑑 × (𝑈𝐵𝑗 − 𝐿𝐵𝑗) + 𝐿𝐵𝑗 , 𝑖 =

1,2, … . . , 𝑁   𝑗 = 1,2, … . 𝐷𝑖𝑚  (15) 
 

In this instance, the Largest Ranked Value 

(LRV) criterion will be applied to each Aquila. 

Using LRV, the mapping of task permutations is 

efficient. Using the LRV rule, the first order of job 

permutation is determined by selecting the value 

with the highest weight. The second order will 

have the second-highest value [26].  

 

2.2.3. Mathematical model   

The AO algorithm simulates Aquila's 

hunting behavior by displaying the actions of each 

hunting step and the activities of each hunting 

ledge. High hovering with vertical bending to 

select the search space; contour flight with short 

gliding strikes to explore another search space; 

low flight with slow descending strikes to exploit 

a converging search space; and swooping by 

walking and capturing prey are the four methods 

used to represent the optimization process of the 

proposed AO algorithm. If 𝑡 ≤ (
2

3
) ∗ 𝑇 , the AO 

algorithm can use various behaviours to transition 

from the exploration phase to the exploitation step. 
 

Step 1: Extended exploration (𝑿𝟏) 

In the first method, Aquila uses its high 

altitude and vertical bending to identify prey and 

choose the ideal hunting location. Here, the AO 

moves around to find its prey's place in the search 

region. It represents the equation (16). 
 

𝑋1(𝑡 + 1) =  𝑋𝑏𝑒𝑠𝑡(𝑡) × (1 −
𝑡

𝑇
) + (𝑋𝑀(𝑡) −

𝑋𝑏𝑒𝑠𝑡(𝑡) ∗ 𝑟𝑎𝑛𝑑),                                (16) 
 

where 𝑋1(𝑡 + 1)  is the solution of the next 

iteration t, generated by the first search method 

(𝑋1). 𝑋𝑏𝑒𝑠𝑡 (𝑡) is the best solution obtained by the 

solution up to the t iteration. It reflects the esti-

mated prey spot. Equation (
1−𝑡

𝑇
) Used to manage 

the number of repetitions in the extended search 

(exploration). 𝑋𝑀(𝑡)  Represents the average 

location value of the current answer connected 

after t iterations using equation (17). A random 

number between 0 and 1 is called 𝑟𝑎𝑛𝑑. T stands 

for the maximum amount of iterations, and t 

stands for the current iteration.   
 

𝑋𝑀(𝑡) =
1

𝑁
∑ 𝑋𝑖(𝑡),     ∀𝑗 = 1,1, … . . , 𝐷𝑖𝑚𝑁

𝑡=1         (17) 
 

where N  is the number of potential answers, and 

Dim is the problem's dimension (population size). 
 

Step 2: Narrowed exploration (𝑿𝟐) 

When a prey area is located using the 

second technique (𝑋2), the Aquila circles over the 

prey while preparing to land and then launches an 

attack. The term "contour flight with a short 

gliding attack" refers to this technique. In this 

case, the AO narrowly investigates a chosen 

region of the prey target in order to prepare for the 

assault. Equation (18) describes this action of 

Aquila mathematically. 
 

𝑋2(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑡) × 𝐿𝑒𝑣𝑦(𝐷) + 𝑋𝑅(𝑡) + (𝑦 −

𝑥) ∗ 𝑟𝑎𝑛𝑑,                             (18) 
 

where 𝑋2(𝑡 + 1) represents the answer of step t, 

produced by the second search technique (𝑋2). 
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Levy (D) is the flight levy distribution function 

computed using the equation, and D is the 

dimension space. It is described by equation (19). 
 

𝐿𝑒𝑣𝑦(𝐷) = 𝑠 ×
𝑢 ×𝜎

|𝑣|
1
𝛽

                                 (19) 

 

where u and v are random numbers between 0 and 

1, s is a constant value set at 0.01, and these values 

are determined using the equation (20). 
 

𝜎 = (
г(1+𝛽)×𝑠𝑖𝑛𝑒(

𝜋𝛽

2
)

г(
1+𝛽

2
)×𝛽×2(

𝛽−1

2
)
)                       (20) 

where 𝛽  is a constant with a value of 1.5, the 

search is represented in equation (18) by a spiral 

shape that is computed using the variables y and x 

that are described by equation (21), (22), (23), 

(24), and (25). 
 

𝑦 = 𝑟 × cos (𝜃)  (21) 

𝑥 = 𝑟 × sin(𝜃) (22) 

𝑟 = 𝑟1 + 𝑈 × 𝐷1 (23) 

𝜃 = −𝜔 × 𝐷1 + 𝜃1  (24) 

𝜃1 =
3×𝜋

2
  (25) 

 

Algorithm 1 : Pseudocode of Aquila Optimizer Algorithm 

Initialization phase: 

Initialize the AO's X population. 

Initialize the AO's parameters. 

while (The last iteration is not satisfied) do 

Apply LRV to convert vector position Aquila to permutation job scheduling 

Determine the values for TEC in each AO 

Xbest(t)= Calculate the optimal solution based on TEC in population AO 

for (i=1,2...,N) do 

XM (t) mean value should be updated according to the current solution (t)  

Update the x, y, G1, G2, Levy(D), etc. 

if 𝑡 ≤ (
2

3
) ∗ 𝑇 then 

if rand≤ 0:5 then 

Phase 1: Expanded exploration (X1) 

The present solution can be updated by using Equation (16). 

if Fitness(X1(t+1)) < Fitness(X(t)) then 

X(t) =(X1(t+1)) 

if Fitness(X1(t+1)) < Fitness(Xbest(t)) then 

Xbest(t) =X1(t+1) 

end if 

end if 

else 

Phase 2: Narrowed exploration (X2) 

The present solution can be updated by using Equation (18) 

if Fitness(X2(t+1)) < Fitness(X(t)) then 

X(t) =(X2(t+1)) 

if Fitness(X2(t+1)) < Fitness(Xbest(t)) then 

Xbest(t) =X2(t+1) 

end if 

end if 

end if 

else 

if rand≤ 0:5 then 

Phase 3: Expanded exploitation (X3) 

The present solution can be updated by using Equation (26) 

if Fitness(X3(t+1)) < Fitness(X(t)) then 

X(t) =(X3(t+1)) 

if Fitness(X3(t+1)) < Fitness(Xbest(t)) then 

Xbest(t) =X3(t+1) 

end if 

end if 

else 

Phase 4: Narrowed exploitation (X4) 

The present solution can be updated by using Equation (27) 

if Fitness(X4(t+1)) < Fitness(X(t)) then 

X(t) =(X4(t+1)) 

if Fitness(X4(t+1)) < Fitness(Xbest(t)) then 

Xbest(t) =X4(t+1) 

end if 

end if 

end if 

end if 

end for 

end while 

Return The Optimal solution (Xbest) 
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Step 3: Extended exploitation (𝑿𝟑) 

In the third method (𝑋3),  the Aquila 

descends vertically with a preliminary strike to 

gauge the prey's response. After identifying the 

prey area, precise results have been obtained, and 

the Aquila is prepared to land and attack. It is 

referred to as a low flight with a gradual down-

ward assault. A slow descending attack by AO 

mimics Aquila's low-flying behavior by taking 

advantage of the chosen target region. Equation 

(26) is a description of the algebraic behavior. 
 

𝑋3(𝑡 + 1) = (𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑀(𝑡)) × 𝑎 − 𝑟𝑎𝑛𝑑 +

((𝑈𝑏 − 𝐿𝑏) × 𝑟𝑎𝑛𝑑 + 𝐿𝑏) × 𝛿               (26) 
 

where 𝑋3(𝑡 + 1)  is the solution of the next 

iteration t, generated by the third search method 

(𝑋3). 𝑋𝑏𝑒𝑠𝑡 (𝑡) alludes to iteration i estimated prey 

location (the best solution obtained), and 𝑋𝑀 (𝑡) 

shows the present solution's average value at the t 

iteration. Between 0 and 1, the number rand is 

random. 𝛼  and 𝛿  is a valuable utilisation 

adjustment parameter (0,1). The letters LB and 

UB indicate the problem's lower and upper 

bounds, respectively. 
 

Step 4: Narrowed exploitation (𝑿𝟒) 

In the fourth technique (𝑋4),  the Aquila 

will attack its prey on the ground as it gets close to 

it using stochastic movements. It is known as 

"walking and grabbing prey." The AO now enga-

ges the prey at the previous position. Equation 

(27) shows that the algebraic description fits this 

behavior. 
 

𝑋4(𝑡 + 1) = 𝑄𝐹 × 𝑋𝑏𝑒𝑠𝑡(𝑡) − (𝐺1 × 𝑋(𝑡) ×
𝑟𝑎𝑛𝑑) − 𝐺2 × 𝐿𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 × 𝐺1          (27) 
 

where 𝑋4(𝑡 + 1) is the result of the fourth search 

technique (𝑋4) and represents the solution of the 

subsequent iteration t.  QF indicates the quality 

function computed using the equation used to 

balance the search strategy (28). 𝐺1 represents the 

AO's range of motion during mating passes, 

calculated using equation (29). 𝐺2  indicates a 

value ranging from 2 to 0, showing the flight 

inclination of the AO used to track the prey during 

the elope from the starting point (1) to the 

finishing point. (t), which is produced by equation 

(30). 

𝑄𝐹(𝑡) = 𝑡
2×𝑟𝑎𝑛𝑑()−1)

(1−𝑇)2                         (28) 

𝐺1 = 2 × 𝑟𝑎𝑛𝑑() − 1           (29) 

𝐺2 = 2 × (1 −
𝑡

𝑇
)           (30) 

 

2.2.4. Research data 

4 variations of job and machine data are 

presented in this study using process times derived 

from previous studies. The data and the job and 

machine combinations used for the study are 

presented in Table 2. For this study's Case 1 with 

a small category issue (Table 3), which consists of 

a problem with ten jobs and six machines, data 

from research Carlier [58]. Then, study data from 

research Reeves [59], there is a problem named 

Case 2 with a medium category that involves 30 

jobs and ten machines (Appendix 1). Additionally, 

research Reeves [59] was used to compile the 

research data (Appendix 2), which includes Case 

3, an issue with 50 jobs and 20 machines and a 

large category. Last, the study Heller [60] is where 

the information for a problem with 100 jobs, five 

machines, and a huge category (Appendix 3). 
 

2.2.5. Procedure 

The population used for each research 

parameter is 300 and 500. The iterations used for 

each population are 500 and 1000. The algorithms 

are compared to determine the optimal algorithm 

for minimizing energy consumption. Experiment-

al calculations were performed with Matlab 

R2017b software on Windows 8 with Intel 

Celeron quad-core processor N22930. Each expe-

riment recorded carbon emissions and compu-

tation time. This study benchmarks the solution 

quality of energy consumption to evaluate the 

proposed algorithm's solution quality. A big 

population and iteration are used to compare 

algorithms, specifically Population 500 x Iteration 

500. All methods are solved using Matlab 

R2017b, running on an Intel Celeron quad-core 

processor N22930 under Windows 8. The 

effectiveness of the approach was evaluated using 

the independent sample t-test. 
 

Table 2. Research data 
 

Problem Job and machine Case category Reference 

Case 1 10 jobs, 6 machine Small Carlier [58] 

Case 2 30 jobs, 10 machine Medium Reeves [59] 

Case 3 50 jobs, 20 machine Large Reeves [59] 

Case 4 100 job 5 machine Huge Heller [60] 
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Table 3. Research data case 1 
 

Job 
Machine 

1 2 3 4 5 6 

1 333 991 996 123 145 234 

2 333 111 663 456 785 532 

3 252 222 222 789 214 586 

4 222 204 114 876 752 532 

5 255 477 123 543 143 142 

6 555 566 456 210 698 573 

7 558 899 789 124 532 12 

8 888 965 876 537 145 14 

9 889 588 543 854 247 527 

10 999 889 210 632 451 856 

𝜏𝑗 0.4507 0.5582 0.3014 0.9409 0.7859 0.2709 

𝜑𝑗 0.00663 0.0164 0.0048 0.1007 0.0871 0.00296 

 

3. RESULTS AND DISCUSSION 

Table 4 displays the population comparison 

and iteration trial outcomes using the AO and 

GWO algorithms. According to the experimental 

findings, iteration 500 and population 300 

performed best in case 1. In Case 2, 1000 

iterations and 500 populations yield the greatest 

results. In Case 3, iteration 1000 and population 

300 yield the greatest results. In Case 4, iteration 

1000 and population 300 yield the greatest results. 

The experimental findings also demonstrate that 

the TEC decreases with increasing population and 

iteration. 

On the other hand, if the number and itera-

tions decrease, the resulting TEC increases. The 

parameters used in this problem are the number of 

iterations and the population of each case. Using 

population parameters 300 and 500, as well as 

iterations 500 and 1000, will be analyzed in the 

case of small jobs, and large jobs will be optimal 

when using which parameters. 

Table 5 displays the output of TEC using the 

AO and GWO methods for 30 replications. Cases 

1, 2, 3, and 4 demonstrate that TEC has distinct 

values based on the results. The data distribution 

for each instance is known as boxplot (Fig. 6, Fig. 

7, Fig. 8, and Fig. 9). A boxplot, also referred to 

as a box-and-whisker plot, is a visual representa-

tion of numerical data that illustrates the dataset's 

median, quartiles, and range. The box portion of 

the plot depicts the interquartile range (IQR), 

which represents the range between the first 

quartile (Q1) and the third quartile (Q3). The line 

inside the box corresponds to the median, which 

denotes the middle value of the dataset. The whis-

kers extend from the box to the minimum and 

maximum values of the dataset, excluding any 

outliers. Outliers refer to data points located out-

side the whiskers of the box plot. Boxplots are 

valuable tools for identifying a dataset's  dispersi-

on, skewness, and outliers. They are frequently   

employed    in    statistical    analysis    and    data

 

Table 4. Result of population and iteration on energy consumption 
 

Population Case Job Machine 

 Iteration  

500 1000 

TEC AO TEC GWO TEC AO TEC GWO 

300 

1 10 6 16868.961 17076 16869.097 17055 

2 30 10 7617.104 7662 7618.080 7659 

3 50 10 11995.27 12056 11994.97 12054 

4 100 10 2071.113 2073.5569 2070.696 2073.4747 

500 1 10 6 16869.097 17055 16868.961 17143 

2 30 10 7616.920 7654 7614.161 7662 

3 50 10 11995.307 12053 11995.307 12061 

4 100 10 2070.696 2073.5158 2070.819 2073.7624 
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visualization to compare multiple data groups and 

identify patterns and trends. Boxplots can be 

drawn either vertically or horizontally, and they 

can be customized to include additional informa-

tion, such as mean values or confidence intervals. 

The spread of the AO data is smaller than the 

GWO distribution (Fig. 6, Fig. 7, and Fig. 8). The 

comparison of the data distribution for AO and 

GWO (Fig. 9), shows the AO algorithm has 

broader data distribution than GWO. 

 

Table 5. Energy consumption results of AO and GWO algorithms 
 

Replication 
Case 1 Case 2 Case 3 Case 4 

TEC AO TEC GWO TEC AO TEC GWO TEC AO TEC GWO TEC AO TEC GWO 

1 16871.50 17054.63 7615.98 7659.51 11994.42 12059.67 2071.03 2073.39 

2 16868.96 17143.38 7618.55 7657.34 11994.33 12059.52 2071.02 2073.64 

3 16888.65 17054.63 7612.02 7658.56 11993.22 12058.03 2071.18 2073.39 

4 16868.96 17143.38 7622.61 7661.77 11993.76 12058.03 2070.92 2073.60 

5 16869.10 17054.63 7612.64 7658.04 11995.72 12053.84 2070.92 2073.27 

6 16867.14 17076.05 7614.55 7658.99 11994.30 12058.46 2071.03 2073.27 

7 16869.17 17054.63 7618.48 7658.04 11992.82 12058.46 2071.02 2073.39 

8 16898.25 17054.63 7613.34 7657.17 11994.45 12052.92 2071.18 2073.39 

9 16895.01 17143.38 7613.31 7655.09 11995.05 12054.34 2070.91 2073.52 

10 16872.99 17054.63 7614.95 7657.52 11995.17 12057.47 2070.92 2073.56 

11 16908.51 17076.05 7614.95 7660.12 11994.85 12052.50 2070.92 2073.35 

12 16891.19 17076.05 7616.46 7664.20 11994.86 12059.45 2070.92 2073.19 

13 16888.65 17054.63 7615.80 7658.56 11995.81 12055.83 2071.03 2073.27 

14 16888.65 17054.63 7613.99 7660.12 11994.00 12057.47 2071.02 2073.39 

15 16868.96 17076.05 7615.20 7655.43 11995.14 12060.59 2071.18 2073.93 

16 16869.10 17054.63 7613.04 7656.91 11994.69 12057.11 2070.91 2073.52 

17 16871.50 17054.63 7613.44 7658.04 11994.81 12056.68 2070.92 2073.35 

18 16867.14 17054.63 7618.63 7653.79 11995.86 12059.31 2070.92 2073.56 

19 16868.96 17054.63 7616.07 7653.79 11993.99 12056.76 2070.92 2073.35 

20 16895.55 17054.63 7615.05 7660.47 11996.08 12055.90 2071.03 2073.39 

21 16911.78 17076.05 7614.50 7656.74 11997.31 12052.28 2071.02 2073.19 

22 16888.65 17076.05 7617.77 7659.43 11994.97 12059.60 2071.36 2073.76 

23 16869.10 17076.05 7615.17 7657.52 11993.10 12058.32 2071.43 2073.76 

24 16868.85 17054.63 7615.75 7660.30 11994.60 12059.81 2071.04 2073.31 

25 16868.96 17143.38 7615.11 7661.42 11992.91 12053.13 2071.16 2073.23 

26 16869.17 17054.63 7614.91 7664.37 11994.54 12055.26 2070.89 2073.23 

27 16869.10 17054.63 7614.91 7661.86 11993.34 12052.00 2071.03 2073.64 

28 16871.50 17054.63 7614.01 7664.81 11993.53 12060.80 2071.06 2073.52 

29 16869.10 17076.05 7613.94 7659.25 11993.53 12052.57 2071.13 2073.56 

30 16869.10 17054.63 7615.45 7658.73 11993.53 12057.11 2071.03 2073.39 

 

 
 

Fig. 6. Boxplot case 1 
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Fig. 7. Boxplot case 2 
 

 
 

Fig. 8. Boxplot case 3 
 

 
 

Fig. 9. Boxplot case 4 

 
 

In each of the four cases, the results of 

energy optimization are compared to the average 

test results. The test was conducted with the 

support of SPSS and the Independent sample t-

test. Table 6 summarizes the results of the 

comparison test. In four distinct situations, the AO 

algorithm consumes less energy on average than 

the GWO algorithm. This result is evident given 

that the Sig 2-tailed is <0.05. 

The comparison results of computation time 

between AO and GWO (Table 7), reveal that AO's 

computation time has a smaller value than GWO's. 

Thus, AO exhibits a faster computation time than 

GWO. The proposed AO algorithm yields an 

optimal computation time. 

Energy Consumption Ratio (ECR) is also 

used to evaluate the performance of the 

algorithms. The Energy Consumption Ratio 

(ECR) is defined as the Energy Consumption (EC) 

of the proposed AO algorithm divided by various 

algorithms, that is, GWO (Equation 31). If ECR 1, 

the AO algorithm has a higher performance than 

other algorithms, but if ECR = 1, it has the same 

performance as different algorithms. In addition, 

the other algorithm performs better if ECR > 1. 
 

𝐸𝐶𝑅 =
𝐸𝐶 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝐸𝐶 𝑜𝑡ℎ𝑒𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
         (31) 

 

A comparison of the algorithm energy 

consumption and the ratio of the AO algorithms 

between GWO algorithms was made and 

presented in Table 8. The ECR results show that 

the average GWO values are significant at 0.994 

and 1 for AO. 
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Table 6. Results of energy consumption with independent sample t-test 
 

  
Case1 Case2 Case3 Case4 

AO GWO AO GWO AO GWO AO GWO 

Mean 16878.11 17072.18 7615.35 7658.93 11994.49 12056.77 2071.04 2073.44 

Std. Deviation 13.413 29.908 2.160 2.778 1.042 2.726 0.132 0.183 

t 0.285 0.282 0.316 0.281 

Sig.(2-tailed) 0.000 0.000 0.000 0.000 
 

Table 7. Comparison of computation time 
 

Population Case Job Machine 

Computation time 

500 1000 

CT AO CT GWO CT AO CT GWO 

300 1 10 6 47095 94190 47096 94191 

2 30 10 701522 1403044 701523 1403045 

3 50 10 840223 1680446 840224 1680445 

4 100 10 978933 1957866 978934 1957867 

500 1 10 6 47083 94191 47084 94192 

2 30 10 701511 1403045 701512 1403046 

3 50 10 840212 1680447 840213 1680448 

4 100 10 978922 1957867 978923 1957868 

 

Table 8. Comparison of the algorithms for energy consumption and ECR 
 

Population Case Job Machine 

Iteration ECR 

500 1000 500 1000 

TEC AO 
TEC 

GWO 
TEC AO 

TEC 

GWO 
AO GWO AO GWO 

300 1 10 6 16868.961 17076 16869.097 17055 1 0.988 1 0.989 

2 30 10 7617.104 7662 7618.080 7659 1 0.994 1 0.995 

3 50 10 11995.27 12056 11994.97 12054 1 0.995 1 0.995 

4 100 10 2071.113 2073.5569 2070.696 2073.4747 1 0.999 1 0.999 

500 1 10 6 16869.097 17055 16868.961 17143 1 0.989 1 0.984 

2 30 10 7616.920 7654 7614.161 7662 1 0.995 1 0.994 

3 50 10 11995.307 12053 11995.307 12061 1 0.995 1 0.995 

4 100 10 2070.696 2073.5158 2070.819 2073.7624 1 0.999 1 0.999 

Average energy consumption rasio 1 0.994 1 0.994 

 

Table 9. Comparison with gurobi 
 

Population Case Job Machine 

Iteration 
Gurobi 

500 1000 

TEC AO 
TEC 

GWO 
TEC AO 

TEC 

GWO 
Obj Value 

300 1 10 6 16868.961 17076 16869.097 17055 8969 

2 30 10 7617.104 7662 7618.080 7659 - 

3 50 10 11995.27 12056 11994.97 12054 - 

4 100 10 2071.113 2073.5569 2070.696 2073.4747 - 

500 1 10 6 16869.097 17055 16868.961 17143 9684 

2 30 10 7616.920 7654 7614.161 7662 - 

3 50 10 11995.307 12053 11995.307 12061 - 

4 100 10 2070.696 2073.5158 2070.819 2073.7624 - 
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This research was also conducted using the 

exact method, namely Gurobi (Table 9). Based on 

the research results, Gurobi can only be applied to 

case 1 because it can only run for 1 hour, while 

case 2 to case 4 require more than 1 hour, making 

this method inapplicable. Comparing the results, 

Gurobi's values are closer to AO's, whereas GWO 

has higher values. Therefore, the AO method is 

more optimal. 

This research contributes to developing a 

new AO procedure to reduce energy consumption 

in no-idle flow shop scheduling problems. Based 

on the literature review, this study is the first to 

propose the AO algorithm to solve the no-idle 

flow shop scheduling issue. This study suggests 

the LRV procedure in the proposed algorithm to 

convert the Aquila position to the schedule 

sequence.  This study also tests the population and 

iteration parameters of the AO algorithm to solve 

the energy consumption minimization issue in the 

no-idle flow shop scheduling problem. Four 

experimental cases yielded diverse energy con-

sumption optimizations due to their practical 

outcomes. The population and iteration para-

meters recommended for optimization in the case 

of a small number of jobs are small, according to 

the findings of this study. In the case of a large 

number of jobs, on the other hand, the population 

and iteration parameters are set to use a large 

population and iteration. Moreover, the resulting 

energy consumption is reduced when the popula-

tion and number of iterations are increased in large 

cases. Therefore, decision-makers can utilize the 

proper iteration and population parameters for no-

idle flow shop scheduling. The comparison 

between the AO and GWO algorithms demon-

strates that the proposed algorithm reduces energy 

usage. The independent sample t-test supports this 

conclusion. Therefore, the proposed algorithm can 

resolve the no-idle flow shop scheduling issue. 

 

4. CONCLUSION 

This article discusses the challenges and 

pressures manufacturing industries face due to 

rising energy consumption caused by production 

activities. This study proposes the Aquila 

Optimizer (AO) algorithm to reduce energy usage. 

By presenting a new procedure AO and expanding 

the literature on metaheuristic algorithms that can 

solve energy consumption problems with 

NIPFSP, this study contributes to a greater under-

standing of solving energy consumption problems 

with NIPFSP. It is preferable to use small 

populations and iterations for small tasks. In 

contrast, using significant populations and itera-

tions for large jobs is preferable. 

Additionally, AO is compared to several 

other procedures. Computational investigations 

demonstrate that AO maximizes energy effi-

ciency. Several aspects of this research can be 

investigated in future studies. This study suggests 

that AO can be a starting point for other meta-

heuristic algorithms. In conclusion, the proposed 

AO algorithm can be used to minimize energy 

consumption. Consequently, the suggestion for 

future research is to develop the AO algorithm by 

integrating other procedures to solve more compli-

cated scheduling issues.  
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Appendix 1. Research data case 2 
 

Job 
Machine 

1 2 3 4 5 6 7 8 9 10 

1 12 89 69 94 22 31 22 95 36 38 

2 55 2 94 19 43 74 72 10 99 16 

3 34 78 27 40 21 17 15 62 96 63 

4 100 14 23 42 52 18 29 70 21 47 

5 41 92 88 52 99 41 68 22 57 66 

6 24 62 19 35 24 49 100 65 13 41 

7 29 34 38 72 29 83 44 91 65 100 

8 89 62 32 54 93 59 8 24 86 66 

9 23 34 89 66 10 48 27 11 94 45 

10 81 57 35 78 23 66 1 3 77 14 

11 72 47 75 27 66 64 30 49 42 7 

12 10 15 26 12 98 12 53 81 46 3 

13 47 54 58 73 44 87 87 98 34 15 

14 13 27 29 85 29 64 62 62 79 74 

15 49 57 24 44 18 97 59 75 17 22 

16 50 11 93 53 52 13 51 76 87 95 

17 99 87 85 9 87 98 34 22 66 11 

18 7 8 90 95 29 79 70 79 6 58 

19 48 100 74 60 74 19 21 6 77 84 

20 96 86 19 15 45 1 90 49 98 80 

21 68 73 55 13 28 16 57 20 76 71 

22 53 38 4 43 11 49 12 91 47 3 

23 57 13 12 12 21 68 2 80 9 28 

24 37 79 92 35 63 13 58 36 65 94 

25 39 49 57 23 53 80 42 29 52 33 

26 36 54 59 69 62 12 77 37 87 47 

27 63 35 26 38 47 82 89 34 1 93 

28 60 28 1 51 94 86 42 75 76 77 

29 2 51 79 74 51 28 78 87 81 35 

30 45 94 42 9 70 4 52 54 16 27 

𝜏𝑗 0.2069 0.4754 0.9815 0.3853 0.1825 0.5439 0.2389 0.5302 0.6656 0.794 

𝜑𝑗 0.0062 0.0096 0.0236 0.0079 0.0048 0.0070 0.0033 0.0089 0.0080 0.0075 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.30656/jsmi.v7i2.6446


Jurnal Sistem dan Manajemen Industri Vol 7 No 2 December 2023, 95-115 

 

         http://dx.doi.org/10.30656/jsmi.v7i2.6446    113 

 

Appendix 2. Research data case 3 
 

Job 
Machine 

1 2 3 4 5 6 7 8 9 10 

1 100 72 76 100 16 9 5 87 34 15 

2 19 3 19 68 29 22 16 13 87 70 

3 70 56 39 71 29 91 100 86 88 99 

4 50 93 100 71 84 64 67 29 28 81 

5 80 97 3 10 14 32 92 67 72 68 

6 47 59 29 3 26 20 50 26 1 70 

7 40 63 69 21 56 73 56 10 46 40 

8 84 80 68 82 4 45 100 96 29 67 

9 85 46 59 35 68 84 89 18 97 58 

10 60 60 2 50 90 20 78 56 62 27 

11 78 64 21 5 85 55 15 23 36 87 

12 98 31 42 73 83 48 71 49 72 30 

13 4 57 30 11 67 4 82 77 98 21 

14 45 45 25 45 7 59 88 42 57 81 

15 73 94 83 59 1 72 65 62 45 76 

16 77 84 11 82 10 9 67 27 43 8 

17 22 66 5 77 97 28 61 82 62 96 

18 90 51 87 27 65 76 67 20 75 67 

19 12 92 43 21 92 64 94 67 60 46 

20 9 76 62 46 71 65 76 65 30 38 

21 29 12 71 70 46 96 12 70 76 19 

22 83 15 73 32 51 6 3 29 3 24 

23 83 95 87 29 46 67 89 73 69 33 

24 83 46 82 2 55 54 85 3 20 57 

25 11 32 15 27 2 43 23 79 28 29 

26 10 74 73 99 54 89 83 5 28 90 

27 73 40 4 20 51 18 37 18 61 75 

28 85 30 58 89 48 15 82 77 2 3 

29 56 63 26 87 53 8 80 46 5 62 

30 59 67 73 65 60 61 94 86 38 1 

31 70 66 80 32 93 56 26 41 21 9 

32 4 66 79 43 39 83 55 25 62 13 

33 51 42 90 85 84 29 73 8 95 57 

34 18 30 61 67 57 60 25 10 20 95 

35 61 9 3 2 61 18 44 78 38 74 

36 25 91 31 2 14 97 91 84 88 26 

37 84 8 95 61 85 41 88 4 86 51 

38 74 2 24 42 33 24 62 13 62 10 

39 33 7 62 68 42 41 78 67 99 6 

40 38 43 2 4 62 95 76 91 67 78 

41 43 98 28 51 43 84 13 71 64 81 

42 15 19 50 30 75 90 94 35 51 83 

43 75 98 42 67 24 63 15 45 92 44 

44 29 60 80 86 70 13 100 86 88 6 

45 14 49 78 93 45 94 35 46 18 85 

46 29 20 27 66 70 95 7 11 75 52 

47 73 19 33 36 93 21 44 51 4 24 

48 87 79 52 85 24 89 50 4 37 50 

49 86 99 31 25 78 10 41 66 35 1 

50 2 41 41 88 6 77 89 80 21 54 

𝜏𝑗 0.8785 0.2544 0.8840 0.1757 0.6843 0.4324 0.4011 0.1903 0.4123 0.3214 

𝜑𝑗 0.0091 0.0020 0.0380 0.0009 0.0048 0.0034 0.0033 0.0016 0.0038 0.0041 
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Appendix 3. Research data case 4 
 

Job 
Machine 

1 2 3 4 5 6 7 8 9 10 

1 1 1 1 4 3 5 5 7 6 4 

2 2 5 4 3 1 9 5 4 7 0 

3 5 6 8 4 4 2 5 6 7 5 

4 4 1 5 6 5 7 9 2 6 2 

5 4 4 2 7 3 6 5 8 4 1 

6 7 6 2 5 4 1 4 7 5 5 

7 8 5 8 7 9 5 3 5 1 5 

8 4 2 5 8 9 9 4 7 5 8 

9 2 7 4 2 5 4 5 8 4 3 

10 6 5 1 9 4 4 7 6 5 1 

11 5 4 7 3 9 1 4 7 3 2 

12 2 4 9 2 4 5 2 1 4 2 

13 4 0 1 2 2 3 1 4 2 8 

14 1 2 5 7 8 6 2 1 4 8 

15 6 4 5 1 2 4 5 6 2 9 

16 4 5 3 1 8 7 0 1 4 6 

17 7 3 1 4 7 0 4 1 5 6 

18 5 2 4 1 2 7 5 3 2 3 

19 8 6 8 5 7 4 2 5 9 5 

20 4 5 3 5 7 9 2 4 5 8 

21 3 5 7 9 6 2 4 4 7 3 

22 0 2 4 5 4 7 4 5 4 8 

23 4 2 5 7 4 5 3 2 8 5 

24 7 8 2 1 9 6 7 8 4 1 

25 4 8 5 2 6 8 9 5 8 5 

26 4 5 7 2 3 7 3 6 5 4 

27 4 2 1 5 1 3 5 6 5 5 

28 5 8 5 7 8 2 5 8 3 5 

29 5 4 5 4 5 7 6 2 5 9 

30 8 2 1 5 5 6 7 8 7 5 

31 8 3 5 9 5 4 5 2 4 2 

32 8 5 2 5 7 6 2 8 9 5 

33 3 7 4 6 8 2 4 5 2 3 

34 5 5 4 7 9 8 2 5 2 5 

35 5 2 5 2 5 4 8 2 1 3 

36 5 5 9 5 4 9 8 5 3 5 

37 2 1 2 1 4 3 3 5 2 6 

38 8 8 4 7 2 6 8 6 3 5 

39 9 7 5 8 5 6 5 8 9 4 

40 5 6 9 6 5 3 1 8 7 4 

41 6 4 7 4 3 6 1 4 5 8 

42 4 3 7 5 1 9 2 4 2 5 

43 4 2 8 7 3 4 9 8 7 4 

44 2 5 9 4 2 5 3 0 4 7 

45 9 5 4 2 3 7 0 2 1 6 

46 2 3 2 5 1 0 8 9 5 3 

47 5 2 7 9 4 3 6 2 5 0 

48 7 8 2 1 4 7 5 8 9 4 

49 1 4 2 3 6 8 2 4 7 5 

50 2 5 4 5 6 8 4 1 7 5 

51 8 3 0 2 5 6 8 2 9 4 
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Appendix 3. Research data case 4 (continued) 

 

Job 
Machine 

1 2 3 4 5 6 7 8 9 10 

52 7 2 4 3 6 2 9 4 1 8 

53 3 5 7 5 3 8 6 4 8 1 

54 5 0 5 6 0 0 2 4 7 8 

55 1 9 5 2 4 7 5 0 2 5 

56 0 2 9 6 1 4 0 0 5 2 

57 0 2 5 8 3 6 9 1 2 4 

58 7 9 6 3 5 1 7 5 4 5 

59 4 3 5 2 1 4 9 7 4 1 

60 0 3 5 2 4 9 4 7 5 4 

61 7 8 5 6 3 9 8 7 4 6 

62 1 9 6 7 0 2 4 8 3 6 

63 6 1 2 0 3 5 4 1 7 3 

64 6 5 1 4 9 7 3 5 6 4 

65 1 8 2 6 9 4 7 5 8 4 

66 0 1 6 2 9 4 8 5 7 6 

67 4 2 5 6 8 5 6 4 1 4 

68 3 4 5 8 4 1 2 3 6 8 

69 9 8 2 3 1 4 0 2 4 5 

70 4 3 2 5 6 4 1 8 9 2 

71 5 7 1 2 6 8 2 3 4 7 

72 2 1 4 3 8 4 6 2 4 5 

73 6 7 9 2 4 3 2 5 6 7 

74 2 4 0 2 5 3 4 7 8 6 

75 2 7 5 4 3 1 5 6 0 2 

76 3 5 7 0 2 4 5 2 5 7 

77 2 4 5 3 4 7 8 3 2 4 

78 9 9 1 4 5 7 6 5 3 2 

79 8 2 5 2 2 5 1 5 7 8 

80 4 5 2 4 7 9 5 4 2 4 

81 5 5 1 2 4 2 3 8 5 1 

82 0 2 9 5 4 2 5 9 6 5 

83 1 2 3 5 6 2 4 0 2 5 

84 4 2 3 5 4 2 3 5 4 2 

85 4 4 5 8 9 8 5 2 8 3 

86 4 2 3 3 2 5 8 8 1 2 

87 5 3 6 2 5 6 4 7 9 3 

88 4 2 3 6 8 5 3 4 7 2 

89 5 8 8 3 5 6 5 6 5 2 

90 5 6 4 2 5 4 6 5 8 4 

91 2 1 4 7 4 5 9 8 5 6 

92 2 1 4 6 5 8 6 1 3 5 

93 9 5 1 3 5 7 9 1 2 5 

94 3 5 4 9 7 2 6 5 2 1 

95 2 5 0 3 2 4 7 8 9 5 

96 5 3 5 7 9 2 4 5 5 8 

97 6 3 1 5 0 1 4 8 9 8 

98 3 0 4 3 7 2 6 9 4 1 

99 1 7 4 2 2 4 5 0 6 9 

100 1 7 8 4 6 5 4 8 5 2 

𝜏𝑗 0.7056 0.2464 0.7547 0.3150 0.5565 0.2205 0.4827 0.5384 0.4622 0.2778 

𝜑𝑗 0.0068 0.0022 0.0049 0.0036 0.0051 0.0010 0.0068 0.0053 0.0031 0.0023 
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