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Manufacturing systems must be supported by the availability of materials, a 

streamlined production process and a prepared production line to achieve 

the production target. In a mass customization manufacturing system, the 

number of machines required for customization is relatively small. Conse-

quently, maintenance on critical machines will impact this manufacturing 

system the most. Two types of maintenance strategies are implemented: 

corrective and preventive maintenance. The corrective maintenance requires 

more resources since the time and cost to repair the breakdown machine will 

be higher due to fatal failure. For the management to consider preventive 

maintenance while the binding machines are still operational, it must be 

equipped with a deep analysis demonstrating that fewer resources will be 

required. This paper discusses two deep analyses: accurate prediction of the 

binding machines' breakdown based on Mean Time Between Failure 

(MTBF) data using a deep learning data analytics technique and optimizing 

the maintenance total cost in the available capacitated time. The findings 

and results of this paper show that the proposed deep learning data analytics 

technique can increase the MTBF prediction accuracy by up to 66.12% and 

reduce the total maintenance cost by up to 4% compared with the original 

model. 
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1. INTRODUCTION 

In a mass customisation manufacturing 

system, there are typically multiple production 

lines, each of which will produce a distinct 

product. The availability of materials, a stream-

lined production process and prepared production 

line, must support production targets for each type 

of product. A short production process necessi-

tates a production line with a small number of 

machines, and one way to improve the readiness 

of the production line is to perform maintenance 

on critical machines [1], [2]. There are two types 

of maintenance strategies in the application, which 

are corrective and preventive maintenance. The 

commonly applied maintenance strategy on the 

critical machines in most manufacturing industries 

is corrective maintenance as the production is 

stopped due to the binding machine breakdown 

and the scarcity of resources available for main-

tenance. However, corrective maintenance re-

quires medium to heavy maintenance action due 

to the fatal failure of critical machines. 

Consequently, it requires more maintenance 

resource allocation. Another option is preventive 

planned maintenance, which conducts the 

maintenance when the binding machines are still 
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operational and able to produce the products at the 

standard quality [3], [4]. Therefore, for the 

management to consider preventive maintenance, 

it must be equipped with a deep analysis demon-

strating that fewer resources will be required. 

One of the main issues discussed in the 

preventive planned maintenance is the prediction 

of the critical machines breakdown that can be 

derived from Mean Time Between Failure 

(MTBF) data. The MTBF data is typically not 

constant; it varies according to the machine's 

condition. Since conventional prediction ap-

proaches are inconvenient for MTBF prediction, 

researchers are currently focusing on data 

analytics techniques. Blumbauskas et al. [5] have 

implemented big data analytics to develop an 

intelligent maintenance application. Su & Huang 

[6] investigated the application of big data 

analytics for real-time predictive maintenance. 

Dinis et al. [7] have implemented big data 

analytics to address the stochastic factors in 

planned maintenance. Another similar study that 

implemented big data analytics techniques for 

product life cycle management and maintenance 

has been investigated by Zhang et al. [8]. Other 

applications of big data analytics in supporting 

maintenance have been investigated by other 

researchers [9]–[11] From those studies, it is a big 

opportunity to incorporate big data analytics in 

preventive planned maintenance analysis. 

Maintenance tasks are time-consuming and 

likely to interrupt the production schedule. There-

fore, a maintenance schedule should be planned 

with available resources to ensure it does not 

interfere with production activity and is cost-

effective [12]. Further, it is called capacitated 

planned maintenance. In addition, when the 

MTBF is random, the total cost of maintenance 

must be estimated by factoring in the probability 

of machines breaking down before and after their 

MTBF. Consequently, the total cost formula will 

combine preventive and corrective maintenance 

costs based on their occurrence probabilities. The 

predicted MTBF will be modelled using statistical 

distributions to respond to that issue. The most 

implemented statistical distributions in the main-

tenance study field are exponential and Weibull 

distributions [13], [14]. However, due to its 

versatility and relative simplicity, the Weibull 

distribution proposed by Waloddi Weibull in 1951 

was frequently used in maintenance studies. That 

concept is adopted in this paper in formulating the 

maintenance total cost. 

The primary purpose of maintenance 

planning is to ensure that the production facilities 

continue to operate by their manufacturer's speci-

fications. Therefore, increased maintenance per-

formance should bring growing profitability to the 

industry [15]. Previous researchers have investi-

gated several studies considering available 

resources in planning maintenance tasks. Kuschel 

& Bock [16] have researched weighted capaci-

tated planned maintenance by considering period-

dependent predetermined time constraints for 

scheduled maintenance activities. This study's 

objective is to minimise fixed and variable main-

tenance costs within a feasible timeframe. A 

similar study was conducted by Leo & Engell [17], 

that have analysed the integration of production 

planning with maintenance planning. 

Ghaleb et al. [18] investigated the integration 

of production scheduling and maintenance 

planning in a job shop environment. In that study, 

degrading machines were optimized using a 

hybrid genetic algorithm. Another study that 

considered the machine condition in planning has 

been investigated by Zhang et al. [19]. The 

optimisation  of condition-based maintenance in 

serial machine production systems was examined 

in that study. Alimian et al. [20] investigated 

parallel-line capacitated lot sizing and scheduling 

problems by incorporating sequence-dependent 

setup time and cost and the preventive main-

tenance schedule. Akl et al. [21] have studied a 

maintenance study that accounts for production 

resources. In this study, a high-value asset main-

tenance system was modelled using a novel large-

scale discrete event simulation model and 

simulated by incorporating multiple aspects, 

including asset acquisitions, maintenance work-

force planning, and preventive maintenance 

activity scheduling. 

Today, big data analytics has received 

significant attention from researchers to enable a 

manufacturing system to become intelligent [22], 

[23]. In terms of reliability engineering, which 

sometimes requires an MTBF-based analysis, big 

data analytics present a significant opportunity for 

improving MTBF prediction. One of the factors 

that cause big data analytics to have superior 

prediction is the deep learning technique as the 

data recogniser. Susto et al. [24] have imple-

mented a multiple classifier machine learning 

methodology for Predictive Maintenance. In that 

study, a set of inputs was classified using the 

proposed machine learning method related to 
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operational cost and failure risk. With the 

widespread adoption of big data analytics, the 

deep learning-based data analysis process has 

been standardised, including data collection, 

analysis, storage, and querying. Therefore, there 

are currently a variety of commercial and open-

source platforms that can be used to conduct big 

data analytics. Sahal et al. [25] have studied 

several open-source platforms to be matched with 

the requirements of a predictive maintenance use 

case. The result of the study shows that an open-

source platform must be combined with other 

platforms to increase the capability for the predict-

tive maintenance use case. Other researchers who 

have implemented big data analytics for main-

tenance [26]. 

The advantage of big data analytics in 

providing accurate predictions for the future has 

been utilised by previous researchers in the main-

tenance engineering field [5]. The performance of 

the deep learning technique as the tool in big data 

analytics for prediction and classification has been 

tested in other fields with superior results. This 

empirical proof supports that big data analytics 

can be implemented in maintenance engineering, 

usually containing machine failure prediction. 

Solomon et al. [27] have implemented a deep 

learning technique using a Multi-Layer Perceptron 

network to predict burglaries. The data in that 

study came from several contexts that prove the 

proposed deep learning technique can provide a 

high-accuracy prediction. Cheng et al. [28] used a 

deep learning technique for labelling or classifi-

cation. The study object is sheep behaviours, and 

the output of the prediction system is very poten-

tial to be used as the basis of breeding mana-

gement and monitoring animal welfare. Another 

similar study that implemented a deep learning 

technique for labelling or classification agriculture 

has been investigated by Raei et al. [29]. The 

object of that study is an agriculture irrigation 

system, and the proposed architecture for the deep 

learning technique is convolution network 

architecture with the U-net method. 

Most studies in the maintenance field 

implemented a statistical distribution directly to 

model the randomness of the MTBF with less 

effort to improve the accuracy of the MTBF 

prediction. On another side, studies on main-

tenance engineering that implemented big data 

analytics did not consider the expected total 

maintenance cost of expected preventive and 

corrective maintenance costs. Furthermore, most 

studies in maintenance formulated the total cost as 

a zero-one decision regarding whether to perform 

planned maintenance activities. That method is 

incompatible with stochastic maintenance condi-

tions that must consider the cost of preventive and 

corrective maintenance at a time. In this study, the 

MTBF will be first predicted using deep learning 

data analytics, and then the stochastic factor will 

be modelled using Weibull distribution. The total 

cost is formulated by multiplying preventive and 

corrective maintenance by their probability of 

occurrence. It will be optimised using an evoluti-

onary algorithm by considering the available time 

to conduct the maintenance activities. Therefore, 

an optimum and feasible maintenance schedule for 

all binding machines can be obtained. That is what 

distinguishes this study from previous similar 

studies. 

 

2. RESEARCH METHODS 

The following notations to develop the 

optimisation of the maintenance case are used: 
 

t: index for time 

MTBF: Mean Time Between Failure 

MTBF : The predicted MTBF 

MSE : Mean Squared Error 

m :  index for machine 

M :  number of critical independent 

machines 

y : maintenance activity 

i :  maintenance activity index 

I :  number of maintenance activity 

pt :  duration to carry out preventive 

maintenance task 

ct :  duration to carry out corrective 

maintenance task 

pc :  cost to carry out preventive 

maintenance task 

pl :  estimated multiplier for corrective 

maintenance cost from preventive 

maintenance cost 

cc :  cost to carry out corrective 

maintenance task (𝑐𝑐𝑖 = 𝑝𝑐𝑖 × 𝑝𝑙). 

N :  number of MTBF historical data. 

r : available time capacity 

T :  expected time to replace a machine 
 

In the Weibull distribution, the shape, scale, 

and location values will be determined based on 

the result of the deep learning method; therefore, 

those values will serve as decision variables. The 

following definitions apply to all of the decision 

variables. 
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α : shape value in the Weibull 

distribution 

β :  scale value in the Weibull 

distribution 

γ :  location value in the Weibull 

distribution 

TCp :  expected preventive maintenance 

total cost 

TCc :  expected corrective maintenance 

total cost 

TC :  expected maintenance total cost 

v :  available time 

d :  decision variable to conduct 

maintenance tasks (𝑑 ∈ 0/1) 

Et :  expected time to carry out the 

planned maintenance tasks. 
 

Assumptions: 

a. The value of r in each production planning 

period varies according to the time remaining 

after production activities have been 

completed. 

b. The maintenance task schedule can be shifted 

as long as it is within the coverage period 

before the critical machine breakdown time. 
 

In this study, a conventional approach which 

uses Weibull distribution to model the stochastic 

of the MTBF will be compared with the result of 

the MTBF prediction using the deep learning 

method. Therefore, the algorithm for developing 

Weibull probability distribution is also proposed 

as follows: 

Step 1 : sort ascending the 𝑀𝑇𝐵𝐹𝑚, 𝑚 ∈ =

1, 2, … . , 𝑀. 

Step 2 : Calculate the rank probability (p) of the  

𝑀𝑇𝐵𝐹𝑡𝑚. The objective step is to give a 

score to the sorted MTBF proportionally 

according to the amount of data. 

Therefore, the p will be the function of 

the proportion value and number of data, 

as shown in the following formula: 

 

𝑝𝑀𝑇𝐵𝐹𝑡𝑚
=

𝑖 − 0.5

𝑁
, 𝑡 ∈ 1, 2, … , 𝑁; 𝑚

∈ 1, 2, … , 𝑀 
(1) 

 

Step 3 : determine β value, which is the first 

auxiliary variable to predict the MTBF. 

This variable represents the scale 

parameter in the Weibull distribution of 

the predicted MTBF. Therefore, β is the 

function of the range of the predicted 

MTBF divided by the cumulative 

distribution of the predicted MTBF, as 

shown in the following equation (2). 

Step 4 : determine γ value, the second auxiliary 

variable to predict the MTBF. This value 

represents the threshold of the predicted 

MTBF. Therefore, this variable is the 

function of the cumulative MTBF based 

on their cumulative probability divided 

by their probability of occurrence,  as 

shown in the following equation (3). 

 

𝛽 =
[𝑁 × ∑ 𝑀𝑇𝐵𝐹𝑡𝑚(𝑤𝑖)

1

𝛼𝑁
𝑡=1 ] − [(∑ 𝑀𝑇𝐵𝐹𝑡𝑚

𝑁
𝑡=1 ) × (∑ (𝑤𝑡𝑚)

1

𝛼𝑁
𝑡=1 )]

𝑁 ∑ (𝑤𝑡𝑚)
2

𝛼𝑁
𝑡=1 − [∑ (𝑤𝑡𝑚)

1

𝛼𝑁
𝑡=1 ]

2 , 𝑚 ∈ 1, 2, … , 𝑀 (2) 

Where: 

𝑤𝑡𝑚 = 𝑙𝑛 (
1

1 − 𝑝𝑀𝑇𝐵𝐹𝑚

) , 𝑚 ∈ 1, 2, … , 𝑀 

 

 

𝛾 =
[∑ 𝑀𝑇𝐵𝐹𝑡𝑚

𝑁
𝑡=1 × ∑ (𝑤𝑡𝑚)

2

𝛼𝑁
𝑡=1 ] − [(∑ 𝑀𝑇𝐵𝐹𝑡

𝑁
𝑡=1 × (𝑤𝑡)

1

𝛼) × ∑ (𝑤𝑡)
1

𝛼𝑁
𝑡=1 ]

[𝑁 × ∑ (𝑤𝑡)
2

𝛼𝑁
𝑡=1 ] − [(∑ (𝑤𝑡)

1

𝛼𝑁
𝑡=1 )

2

]

, 𝑚

∈ 1, 2, … , 𝑀 

(3) 
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The β, and γ values will be used to calculate 

the MTBFp by assuming the MTBFp has a 

threshold value of γ and increase non-linearly 

according to the scale value (β). Therefore, the 

MTBFp will be calculated using the following 

formula: 
 

𝑀𝑇𝐵𝐹𝑝𝑡𝑚
= 𝛾 + 𝛽 × [𝑙𝑛 (

1

1−𝑝𝑀𝑇𝐵𝐹𝑡𝑚

)] , 𝑡 ∈

1, 2, … , 𝑁; 𝑚 ∈ 1, 2, … , 𝑀                                  (4) 
 

The independent variable that is α will be 

optimised with the objective function is minimi-

zing the MSE, as defined in the following formula: 
 

𝑀𝑆𝐸𝑚

=
∑ (𝑀𝑇𝐵𝐹𝑡𝑚 − 𝑀𝑇𝐵𝐹𝑝𝑡𝑚

)
2𝑁

𝑡=1

𝑁
, 𝑚

∈ 1, 2, … , 𝑀 

(5) 

 

Step 1 and Step 2 is the requirement to the 

deep learning technique used in this study is from 

the Recurrent Neural Network (RNN) technique 

and is known as Gated Recurrent Unit (GRU) as 

proposed by Cho et al. [30]. In the maintenance 

study field, the MTBF data is recorded conti-

nuously; however, each event is separated by time. 

Therefore, the GRU technique is used because it 

has a procedure to recognise a data pattern 

separated by time. In the GRU technique, two 

gates will be used to address dependencies when 

the algorithm is trying to recognise the data 

pattern. The first gate is called the reset gate to 

anticipate the short-term dependencies while the 

second gate is called the update gate to anticipate 

long-term dependencies. The mechanism of the 

GRU used in this study is adapted from the one 

proposed by Zhang et al. [31], as shown in Fig. 1.  

After the MTBF is predicted using the GRU 

deep learning technique, all Weibull parameters 

will be redetermined, including the TCp, TCc and 

TC, to know the benefit of using the deep learning 

technique in improving the maintenance cost 

performance. The expected maintenance total cost 

is defined in the following formula as the sum of 

the TCp and the TCc. 
 

𝑀𝑖𝑛 𝑇𝐶 =
𝑇𝐶𝑝𝑚+𝑇𝐶𝑐𝑚

𝐸𝑡𝑚
, 𝑚 ∈ 1, 2, … , 𝑀                (6) 

 

The 𝑇𝐶𝑝𝑚
Is computed by multiplying 

maintenance activity with maintenance activity 

cost, as formulated in the following formula: 
 

𝑇𝐶𝑝𝑚
= ∑ 𝑦𝑖𝑚 × 𝑝𝑐𝑖𝑚

𝐼
𝑖=1 , 𝑚 ∈ 1, 2, … , 𝑀         (7) 

 

The 𝑇𝐶𝑐𝑚
 is computed by multiplying the cost of 

corrective maintenance with the probability of the 

machine getting breakdown obtained from the 

cumulative probability of the Weibull distribution. 

Equation 8 shows the formula to compute the 

𝑇𝐶𝑐𝑚
. 

 

𝑇𝐶𝑐𝑚
= 𝑐𝑐𝑐 × 𝐹(𝑇)𝑚, 𝑚 ∈ 1, 2, … , 𝑀 

𝐹(𝑇)𝑚

= {1 − 𝑒
−(

𝑀𝑇𝐵𝐹𝑚−𝛾

𝛽
)

𝛼

, 𝑖𝑓 𝑀𝑇𝐵𝐹𝑚 > 𝛾
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(8) 

 

In (6), the 𝐸𝑡𝑚 is computed by summing the 

cumulative probability of preventive and 

corrective maintenance, as defined in the 

following equation (9). 

𝐸𝑡𝑚 = (∫ 𝑀𝑇𝐵𝐹𝑚

𝑇𝑚

0

× 𝑓(𝑀𝑇𝐵𝐹𝑚)𝑑𝑀𝑇𝐵𝐹𝑚) + (𝑇𝑚 × (1 − 𝐹(𝑇)𝑚)) (9) 

 

Fig. 1. Mechanism of the GRU as the deep learning algorithm
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With reference to assumption a, the planned 

maintenance will consider the available time 

allocated for production activities. According to 

assumption b, if the available time during the 

optimum period for performing planned main-

tenance is insufficient, the maintenance task 

schedule will be shifted to the alternate period by 

considering the minimum TC. That condition is 

defined in the following formula: 
 

𝑝𝑡𝑖𝑚 × 𝑦𝑖𝑚 × 𝑑𝑡 ≤ 𝑟𝑡, 𝑚
∈ 1, 2, … , 𝑀 

(10) 

3. RESULTS AND DISCUSSION 

This study was conducted in an Indonesian 

manufacturing industry. Due to the company's 

implementation of mass customisation, the 

inventory is held in the form of semi-finished 

products. The company manufactures twelve 

distinct types of goods, with a separate production 

line containing two machines handling the 

customisation of semi-finished goods into finished 

goods. The following are the parameter values 

extracted from the system: 

 

M = 12, I = 5, pl = 5, 𝑁𝑚 = (200 200 200 200 200 200 200 200 200 200 200 200). 

𝑦𝑖𝑚 = (
1 1 1 0 1; 0 1 0 1 1; 1 0 1 0 1; 1 1 1 1 0; 1 0 1 1 1; 1 0 1 0 1;
0 1 1 1 1; 0 1 0 1 0; 1 0 1 1 0; 0 1 1 0 1; 0 1 1 1 1; 1 1 1 1 1

) 

𝑝𝑡𝑖𝑚

= (
30 25 20 0 10; 0 40 0 15 5; 40 0 25 0 10; 30 10 10 25 0; 40 0 5 10 15; 10 0 20 0 15; 

0 20 10 5 5; 0 15 0 30 0; 60 0 15 30 0; 0 10 5 0 15; 0 25 10 15 10; 10 20 30 15 10
)  

𝑝𝑐𝑖𝑚

= (

5000 10000 25000 0 7000; 0 12000 0 8000 8000; 5000 0 20000 0 9000; 
7000 12000 25000 8000 0; 6000 0 23000 7000 8000; 8000 0 22000 0 10000;
0 13000 25000 7000 9000; 0 10000 0 8000 0; 6000 0 26000 7000 0;

0 11000 27000 0 8000; 0 8000 22000 5000 7000; 7000 9000 23000 6000 8000

) 

 

The GRU deep learning is implemented using 

Python programming language while the 

optimisation  of the Weibull distribution is 

conducted using built up Evolutionary Algorithm 

in the Microsoft Excel Solver. The non-zero result 

for d variables based on the conventional Weibull

   

distribution is as follows: 
 

𝑑1152
= 1; 𝑑2111

= 1; 𝑑383
= 1; 

𝑑4180
= 1; 𝑑578

= 1; 𝑑655
= 1; 

𝑑750
= 1; 𝑑862

= 1; 𝑑960
= 1; 

𝑑1038
= 1; 𝑑1190

= 1; 𝑑12118
= 1. 

Table 1. Comparison result of the conventional and GRU deep learning-based Weibull distribution 
 

m 
Conventional Weibull Distribution 

GRU Deep Learning-based 

Weibull Distribution 

α β γ MSE TC γ MSE TC 

1 2.150 8.662 21.211 0.850 

49644.29 

22.000 0.650 

47696.67 

2 2.771 9.106 14.459 0.500 14.657 0.320 

3 2.771 5.298 11.115 0.450 11.667 0.080 

4 3.100 6.665 24.799 0.450 25.474 0.090 

5 4.046 6.860 9.037 0.450 9.332 0.210 

6 1.870 5.622 7.568 0.800 8.136 0.500 

7 1.870 7.502 6.554 1.250 6.936 0.600 

8 1.870 2.996 8.704 0.550 9.237 0.070 

9 9.504 10.388 1.761 0.450 1.993 0.100 

10 6.967 7.299 1.190 0.400 1.509 0.150 

11 4.187 6.275 10.927 0.550 11.642 0.110 

12 2.491 6.095 16.238 0.450 16.882 0.120 

   Average 0.596  Average 0.250  

Note: Dimension of the TC is per maintenance unit time 
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Fig. 2. Weibull distribution graphs of the machines 

 

While, the non-zero result for d variables 

based on the GRU deep learning-based Weibull 

distribution is as follows: 
 

𝑑1151
= 1; 𝑑2111

= 1; 𝑑382
= 1; 

𝑑4179
= 1; 𝑑578

= 1; 𝑑654
= 1; 

𝑑749
= 1; 𝑑862

= 1; 𝑑959
= 1; 

𝑑1037
= 1; 𝑑1190

= 1; 𝑑12117
= 1. 

 

Comparison of the result of the conventional 

Weibull distribution and the GRU deep learning-

based Weibull distribution is shown in Table 1. 

Based on the Table 1, it can be seen that the GRU 

deep learning technique is able to improve 

accuracy of the MTBF prediction up to 
(0.596−0.250)

0.596
× 100% = 66.12% and the TC up to 

(49644.29−47696.67)

49644.29
× 100% = 4%. 

The primary contribution of incorporating the 

deep learning technique in this study is to enhance 

the MTBF prediction's accuracy. Nonetheless, it 

also affects the TC, and this phenomenon can be 

explained using the graphs of the Weibull distri-

bution of critical machines shown in Fig. 2. 

Fig. 2 demonstrates that the majority of 

Weibull curves for critical machines are skewed to 

the left, indicating that preventive planned main-

tenance is preferable for minimising the expected 

TC. However, because the Weibull curves for 

machines 9, 10, and 11 are relatively centred, the 

likelihood that these machines will break down 

when their maintenance tasks are scheduled 

remains high. In such a scenario, the expected TC 

will be greater; however, when the MTBF 

prediction can be improved using the proposed 

deep learning technique, the likelihood of 

machines break down will be lower, resulting in a 

lower expected TC. 

4. CONCLUSION 

On the basis of the preceding explanation, it 

can be concluded that the proposed optimisation 

model for preventive planned maintenance can be 

used to optimise the case under consideration with 

feasible maintenance schedule. When the expec-

ted total maintenance cost is modelled by taking 

into account the probability of performing both 

preventive and corrective maintenance, an in-

crease in the accuracy of MTBF prediction using 

deep learning data analytics results in a decrease 

in the expected total maintenance cost. 

From a managerial perspective, the MTBF 

prediction using deep learning can be used to 

predict and anticipate machines failure to keep the 

production lines up. The proposed optimisation 

model can be used to determine maintenance 

schedule based on time available. For future 

research, it is recommended to focus on the order 

allocation and schedule for each machine, which 

affect the machine's reliability. Thus, the trade-off 

between order fulfilment and machine main-

tenance can be resolved 
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