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This study proposes the hybridization of tabu search (TS) and variable 

neighbourhood descent (VND) for solving the Inventory Routing Problems 

with Stochastic Demand and Time Windows (IRPSDTW). Vendor 

Managed Inventory (VMI) is among the most used approaches for 

managing supply chains comprising multiple stakeholders, and imple-

menting VMI require addressing the Inventory Routing Problem (IRP). 

Considering practical constraints related to demand uncertainty and time 

constraint, the proposed model combines multi-item replenishment 

schedules with unknown demand to arrange delivery paths, where the 

actual demand amount is only known upon arrival at a customer location 

with a time limit. The proposed method starts from the initial solution that 

considers the time windows and uses the TS method to solve the problem. 

As an extension, the VND is conducted to jump the solution from its local 

optimal. The results show that the proposed method can solve the 

IRPSDTW, especially for uniformly distributed customer locations.  
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1. INTRODUCTION 

Integration and coordination of different 

supply chain management (SCM) components 

have become crucial to connect organizational units 

and coordinate material, information, and financial 

flows to increase the supply chain's competi-

tiveness [1]. Vendor-managed inventory (VMI) is 

being implemented to support SCM in handling the 

complete component. VMI refers to a supplier's 

capability to monitor its retailers’ inventory levels. 

VMI is also free to select when and how much stock 

to restock at each location/shop, allowing for more 

efficient supply chain operations. Under VMI, the 

supplier is accountable for organizing the 

replenishment of inventory and the selection of 

vehicles. The VMI concept can be modelled as an 

inventory routing problem (IRP) [2], allowing the 

optimum coordination of inventory replenishment 

and vehicle routing problems. IRP is an extension 

vehicle routing problem (VRP) in which the 

supplier decides when, how much, and where to 

deliver the goods [3].  

The application of IRP has been found in 

different industries, including the perishable and 

food retail industry [4]–[8], the biogas industry [9], 

the petrochemical industry [10], the spare part 

manufacturing industry [11], and furniture industry 

[12]. Several extensions of  IRP are also studied, 

including time-dependent IRP [13], multi-period 

IRP [14], IRP with time-varying demand [15], 

multi-vehicle cyclic IRP [16], IRP with split up and 

deliveries [17], and maritime IRP [18]. As an NP-
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hard problem, inventory and routing problems are 

solved using many approaches, including exact 

methods and metaheuristics. Coelho et al. [19] 

utilized Brand and Cut to solve multi-attribute IRP 

and embedded it with variable neighbourhood 

search (VNS) as the local search. Skålnes et al. [15] 

also incorporated Branch and Cut to solve IRP with 

time-varying demand. The approach will depend on 

the factors involved in the problem, such as 

inventory policies, time horizon, demand distri-

bution, and many others [20]. Some metaheuristics 

approaches include simulated annealing [16], 

genetic algorithm [14], insertion heuristics [21], 

and tabu search [22]. Matheuristics has also proven 

to be an efficient and robust method to solve 

variants of IRP [13], [18].  

Among the previous IRP variants studies, one 

notably studied quite excessively is stochastic IRP. 

Stochasticity in the problem might occur due to 

unknown actual demand, uncertain travel times, or 

uncertain supply levels. Some modelled the uncer-

tainty using random variables or different values 

throughout the planning horizon.  In some studies, 

scenarios are generated to capture the uncertainty 

of the problem.   

Huang and Lin [6] investigated a multi-

product single-period IRP with unpredictable 

demand and stockouts. The goal is to minimize the 

overall cost, supplied by the sum of planned routes, 

recourse costs, and predicted stockout costs. The 

authors proposed a modified ant colony optimiza-

tion to solve the problem with the modified version 

shows a more efficient result. An IRP with 

stochastic requests with specific probability and 

split delivery is proposed by Yu et al. [23]. The 

authors tried to minimize total cost and maximise 

customer satisfaction by proposing the split 

delivery strategy. The authors used a hybrid 

solution technique that linearized the sub-model to 

solve the problem. Further, Bertazzi et al.  [24] 

investigated an IRP with stochastic demand that 

always needs to be satisfied. The aim is to minimize 

the total cost, which is calculated by adding the 

estimated inventory cost, penalty cost for the out-

stock situation, and routing cost.  

Coelho et al. [25] studied IRP with dynamic 

and stochastic demand. The authors provided 

heuristic policies where only single-vehicle trans-

shipments are allowed. The objectives are to 

minimize inventory, shortage, routing, and tran-

shipment costs. The authors proposed several 

strategies using a heuristics approach in which it is 

revealed that additional forecasting capability 

might help find the stochastic demand information. 

Furthermore, the decision on the distribution route 

should not be in a long planning period since it will 

not improve the solution.  

Gruler et al.  [26] studied a single-period IRP 

with stochastic demand and stockouts to reduce 

inventory and routing expenses. The authors 

proposed a variable neighbourhood search with 

simheuristic to solve the problem. Nikzad et al.  

[27] studied stochastic IRP in drug distribution with 

uncertain demand to reduce inventory, shipping, 

and stockout costs. The uncertainty is modelled as 

different demand scenarios. Two chance-con-

strained stochastic formulations and two-stage 

stochastic programming were suggested. Qu et al. 

propose a heuristic decomposition strategy for 

tackling the stochastic joint replenishment issue 

with several items [28]. In this study, the inventory 

and transportation policies were jointly examined. 

Another investigation was undertaken by Yang et 

al. [29]. They devised heuristic methods and an 

optimum restocking strategy using a single product 

for a stochastic vehicle-routing issue. In research by 

Archetti et al. [30], the supplier monitors each 

store's inventory and develops a collaborative 

replenishment plan in a stochastic environment 

where stock-outs are forbidden. In addition, 

Christiansen & Lysgaard [31] researched capaci-

tated VRP with stochastic replenishment demand 

for a single item. The most current research 

formulates a fixed-fleet VRP with stochastic 

demands and multiple items (VRPSDMI) to choose 

a route with the lowest estimated total costs. In their 

study, a central supplier must resupply a subset of 

customers with uncertain demand, identify which 

customers to restock using viable daily route plans, 

and minimize the overall cost.  

The variant of IPR, which consider both 

stochastic demand and time windows, is still hardly 

found, although almost similar study with lead time 

has been proposed by Roldan [32]. In this study, we 

extend the vehicle routing problem with stochastic 

demand and multi-item (VRPSDMI) problem 

proposed by Huang & Lin [6] and add the time 

window constraint for each retailer into the 

inventory routing problem with stochastic demand 

and time windows (IRPSDTW). Sometimes, when 

the vendor tries to deliver goods, the actual demand 

can only be known upon arrival. A stock-out will 

occur if the vendor fulfills their vehicle based on the 

maximum vehicle capacity and the actual demand 

on a route exceeds the prepared inventory. 

Consequently, the vehicle will need to return to the 
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depot, replenish the vehicle, and serve the rest of 

the retailers until their working hours end. Since 

specific locations are visited without previous 

knowledge of their inventory levels and demand, 

the distribution method may result in high 

operating costs and various issues. In this situation, 

there is a significant likelihood of a stock-out, and 

daily trips to each retailer are impractical owing to 

vehicle limits. Also, the likelihood of being out of 

stock will go up when the demand is random, and 

the vehicle capacity is small compared to how 

much is needed at the retailers. 

With additional constraints and time windows, 

this study tries to understand the trade-off between 

stock-out costs and transportation costs that 

occurred because of the uncertain demand within 

its time windows and find the optimal number of 

vehicle configurations to minimize total cost. In 

real conditions, vendors also need to be able to 

serve the retailers according to the schedule 

prepared beforehand, thus indicating the need for 

time windows constraint.  

 

1.1. Problem Description 

 IRPSDTW can be described as an undirected 

graph, G = (V, A), where V = {0, 1, …, N} is the 

group of locations that needs replenishment and 

holding given items and with a given capacity. 

Node 0 denotes the depot with 

A = {(i, j): i, j ϵ V, i ≠ j} is the set of a route 

consisting of k number of customer locations, and 

dij represents the distance between location i and 

location j. The mathematical model for the 

problem is modified from the models from Huang 

& Lin [6]. There is M number of vehicles, and 

each vehicle has Q capacity. Each location i holds 

C number of items, where maximum inventory for 

item c in location i is denoted by 𝐼𝑖
𝑐. 

In IRPSDTW, each location i is assumed to 

have 𝜉𝑖
𝑐  demand based on a normal distribution 

with E[·] is the expected value of the random 

variable, while the actual demand required is 

implied as 𝜁𝑖
𝑐 . Furthermore, this study also 

considers the failure cost if vehicle m failed to 

fulfil the demand in location i for item c with a 

probability of ,

c

i m . Additionally, the probability 

of stock out for item c in location i during the 

replenishment cycle is ( )c

iP   with Sc per-unit cost 

of item c being understocked. Further, we denoted 

T as the unit cost (per km), W as regular working 

day,  𝑠𝑖,𝑗
𝑚  notated the speed of vehicle, where each 

location i needed   𝛿𝑖
𝑚  replenishment time, and 

𝑢𝑖
𝑚 served as the flow variable for vehicle m once 

it served location i. Decision variable 𝑥𝑖,𝑗
𝑚 = {0,1}, 

where 𝑥𝑖,𝑗
𝑚 = 1 implored that there is path between 

location i and j using vehicle m, whereas decision 

variable 𝑦𝑖
𝑚  will be equal to 1 if vehicle m is 

assigned to replenish location i.  

The objective function cost (z) consists of 

stock out cost SOC, transportation cost 𝑇𝑅, failure 

cost  𝐹 and penalty cost PEN due to time 

constraint violation and is presented in equation 

(1). The transportation cost is calculated by 

multiplying the planned travel distance 𝐷𝑚 =
∑ ∑ 𝑑𝑖,𝑗 ⋅ 𝑥𝑖,𝑗

𝑚
𝑗𝑖 , ∀𝑖, 𝑗 ∈ {0} ∪ 𝑉1, 𝑖 ≠ 𝑗  , with unit 

cost T. The transportation cost per replenishment 

cycle is ∑ (𝐷𝑚 × 𝑇)𝑀
𝑚=1 . Additional transport cost 

might occur if the vehicle fails to fulfil demand in 

location I, which require the vehicle m to restock 

by returning to depot and have a recourse path 

equal with 2𝑑𝑖,0. The probability of failure can be 

calculated from expected demand and actual 

demand data equivalent with 𝜃𝑖,𝑚
𝑐 =

𝑚𝑎𝑥
𝑐∈𝐶

{𝑃𝑟( ∑ 𝜁𝑖
𝑐 > ∑ 𝐸[𝜉𝑖

𝑐]𝑘
𝑖=1

𝑓
𝑖=1 )} . The failure 

cost is ∑ ∑ (2𝑑𝑖,0 × 𝜃𝑖,𝑚
𝑐 × 𝑇)𝑘

𝑖=1
𝑀
𝑚=1 . 

 

𝑧

= ∑ (𝐷𝑚 × 𝑇)

𝑀

𝑚=1

+ ∑ ∑(2𝑑𝑖,0 × 𝜃𝑖,𝑚
𝑐 × 𝑇)

𝑘

𝑖=1

𝑀

𝑚=1

 

+ ∫ ∑ ∑ 𝑆𝑐 × 𝑃𝑖
𝑐(𝑥)

𝐶

𝑐=1𝑖∈𝑉2

𝑥=∞

𝑥=1

𝑑𝑥 

+ 𝑎𝑗
𝑚

− ∑ ∑ 𝑥𝑖,𝑗
𝑚(𝑎𝑖

𝑚 + 𝑡𝑖,𝑗 + 𝛿𝑖 + 𝑤𝑖)

𝑖∈𝑉𝑚∈𝑀

 

 

(1) 

 

A stockout happens when a consumer's 

demand for a certain product is not promptly met. 

Given that M trucks cannot serve location during 

a replenishment cycle, the nodes are divided into 

two sets, V1 and V2, with V1 representing 

locations designated for service and V2 

representing those not. Hence the SOC is equal to 

𝑆𝑂𝐶 = ∫ ∑ ∑ 𝑆𝑐 × 𝑃𝑖
𝑐(𝑥)𝐶

𝑐=1𝑖∈𝑉2

𝑥=∞

𝑥=1
𝑑 

The time window of a location i, is specified 

by an interval [ei, li] representing the earliest and 

the latest arrival time. All vehicles must arrive at 

a site before the end of the time windows li. 
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Accordingly [e0, l0] represents the time windows 

for the depot. The travel time between path (i, j)  

E is denoted by ti,j where , ,i j i jt d T  . 
m

ia is the 

arrival time of vehicle m at customer i and 
m

ip  is 

the departure time at location i. 

The time windows are viewed as a hard time 

constraint that cannot be breached. However, it is 

permissible to break the limitations during the 

computing operation. Each time a solution 

exceeds or violates the time limit, it incurs a 

penalty. The penalty can be calculated following 

as 𝑎𝑗
𝑚 − ∑ ∑ 𝑥𝑖,𝑗

𝑚 (𝑎𝑖
𝑚 + 𝑡𝑖,𝑗 + 𝛿𝑖 + 𝑤𝑖)𝑖∈𝑉𝑚∈𝑀 . 

 

Subject to 

∑ ∑ 𝐸[𝜉𝑖
𝑐]

𝐶

𝑐=1𝑖∈𝑉1

× 𝑦𝑖
𝑚 ≤ 𝑄   (2) 

∑ ∑ 𝑥𝑖,𝑗
𝑚 = 1, ∀𝑖 ∈ 𝑉1, 𝑖 ≠ 𝑗, 𝑗 ≠ 0, 𝑖

𝑀

𝑚=1𝑗∈𝑉1

≠ 0 

(3) 

 

∑ ∑ 𝑥𝑖,𝑗
𝑚 = 1, ∀𝑖 ∈ 𝑉1, 𝑖 ≠ 𝑗, 𝑗 ≠ 0, 𝑖

𝑀

𝑚=1𝑖∈𝑉1

≠ 0 

  (4) 

∑ ∑ 𝑥𝑖,𝑗
𝑚 = 0, ∀𝑖 ≠ 𝑗

𝑀

𝑚=1𝑗∈𝑉2
𝑗≠𝑖

 
  (5) 

∑ ∑ 𝑥𝑖,𝑗
𝑚 = 0, ∀𝑗 ≠ 𝑖

𝑀

𝑚=1𝑖∈𝑉2
𝑖≠𝑗

 
  (6) 

∑ ∑ 𝑥𝑖,0
𝑚

𝑀

𝑚=1𝑖∈𝑉1

= ∑ ∑ 𝑥0,𝑗
𝑚

𝑀

𝑚=1𝑗∈𝑉1

   (7) 

𝑥𝑖,𝑗
𝑚 ≤ 𝑦𝑖

𝑚, ∀𝑖 ∈ 𝑉1, ∀𝑚 ∈ 𝑀   (8) 

𝑢𝑖
𝑚 − 𝑢𝑗

𝑚 + 𝑄. 𝑥𝑖,𝑗
𝑚 ≤ 𝑄 − ∑ 𝐸[𝜉𝑗

𝑐]

𝐶

𝑐=1

, ∀𝑚

∈ 𝑀 

(9) 

 

∑ 𝐸[𝜉𝑖
𝑐]

𝐶

𝑐=1

≤ 𝑢𝑖
𝑚 ≤ 𝑄, ∀𝑖 ∈ 𝑉1, ∀𝑚 ∈ 𝑀 (10) 

∑ 𝑦𝑖
𝑚

𝑁

𝑖=1

𝑤𝑖
𝑚 + 𝐷𝑚/𝑠𝑖,𝑗

𝑚 ≤ 𝑊, ∀𝑚 ∈ 𝑀 (11) 

𝑎0
𝑚 = 𝑤0

𝑚 = 𝛿0
𝑚 (12) 

𝑒𝑖 ≤ 𝑎𝑖
𝑚 ≤ 𝑙𝑖 , 𝑖 ∈ 𝑉, 𝑚 ∈ 𝑀 (13) 

𝑥𝑖,𝑗
𝑚 ∈ {0,1}, ∀𝑖 ∈ 𝑉1, 𝑚 ∈ 𝑀 (14) 

𝑦𝑖
𝑚 ∈ {0,1}, ∀𝑖 ∈ 𝑉1 (15) 

Constraint (2) states that the expected total 

demand for vehicle m allocated to restock location 

i should be less or equal with vehicle's capacity. 

Constraint (3) guarantees that any vehicle leaving 

location is counted only once in set V1 and (4) that 

any vehicle that visits a location is only counted 

once in set V1. Constraints (5) and (6) guarantee 

that no vehicle will visit the vending machines 

belonging to set V2. In addition, constraint (7) 

denotes vehicle flow in and out of the depot. 

Constraints (8) guarantee that route (i,j) is served 

by vehicle m if vehicle m is tasked with restocking 

location i. The sub-tour elimination limitations (9) 

and (10) impose the capacity and vehicle flow on 

the routes. For the time windows, constraint (11) 

indicates that the intended delivery time allocated 

to vehicle m should be within working hour W. 

Constraints (12-13) ensure that each vehicle must 

arrive in the retailers i within the time interval. 

Decision variables are presented in (14-15). 

 

2. RESEARCH METHODS 

This paper combines a tabu search algorithm 

and variable neighbourhood descent (VND) to 

solve this proposed inventory routing problem. 

Tabu search has been proven to be able to solve 

variants of vehicle routing problems, including 

inventory routing problems, with robust results 

[22], [33], [34]. Furthermore, the algorithm is also 

able to solve a stochastic problem [35], and 

additional time windows constraint [36], [37]. 

Hybridization of metaheuristics algorithm is not 

new, including using VND as part of Tabu Search 

for routing problems [38]. VND has also been 

proven to be a robust local search algorithm [39] 

[40]. This solving algorithm is developed as a two-

phase method. The first phase tries to find the 

initial solution by considering the time windows 

that will affect the stock out happen. A time-

heuristic-based method is applied to find the initial 

solution will low time violation. After 

constructing the initial solution, the intra-route 

swap method is conducted to improve the initial 

solution. Furthermore, two-movement, insert and 

swap are implemented in the second phase. In the 

end part of the algorithm, we perform VND to find 

the optimal solution. 
 

2.1. Initial Solution 

To construct the initial solution, we try not to 

violate the time windows of each customer. 

Hence, we first order the customers based on the 

centre of their time window ½ (ei + li). Until all 
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customers are assigned to a route, we sequentially 

select a pre-ordered customer and insert it in the 

route k. The number of k is based on the number 

of vehicles available (M). The detailed procedure 

for Phase 1 is as follows: 

Step1. Order ascending all customers based on 

the center of their time window ½ (ei + li).   

Step2. Set up k ←1 as the first route. The number 

of vehicles m to be the maximum route 

constructed. 

Step3. Select customer i from the list of ordered 

customers. 

Step4. Insert customer i at the start of route k.  

Step5. Set k ← k +1. 

Step6. If k exceeds the number of available 

vehicles m, set k ← 1. 

Step7. Repeat until all customers are assigned to 

a route. 
 

2.2. Tabu Search Algorithm 

According to Glover [41], the Tabu Search 

algorithm explores the solution space by going 

from a solution x discovered at iteration t to the 

best solution xt+1 in a subset of the neighbourhoods 

N(x).  

After acquiring the initial solution in Phase 1, 

we implemented the insert move Tabu search 

strategy to enhance the solution. Next, a swap 

move is utilized to enhance the existing optimal 

solution. We execute 2-opt till the maximum 

iteration count MaxIte after the tabu algorithm. The 

following is the phase 2 technique in detail (Fig. 

1):  

Step1. Set up Ite as the iteration number and 

Max_Ite as an iteration threshold in the 

improvement phase. X0 is an initial 

solution, and the optimal solution X* = X0. 

Step2. Perform insert to produce a new solution 

(from X0 to X1) by randomly selecting two 

routes, Vi and Vj, and choose one of the 

nodes in Vi and insert randomly in Vj. 

Step3. Select the move with the lowest objective 

function (1) from the candidate list. 

Step4. Perform Step5 if the move is included in 

the tabu list; otherwise, perform Step6. 

Step5. If this candidate has total_cost (X1) ≤ 

total_cost(X*), go to Step 6. Otherwise, 

go to Step3, and select another move. 

Step6. Perform the insert move. Update X0 = X1, 

total_cost(X0) = total_cost(X1), and 

replace the Tabu list. 

If total_cost (X1) ≤ total_cost(X*), X* = 

X1, total_cost (X*) = total_cost(X1). 

Step7. Repeat Step2-Step7 for the swap move. 

Step8. Perform 2-opt move. If total_cost(X1) ≤ 

total_cost(X*), X* = X1, total_cost(X*) = 

total_cost(X1). 

Step9. If total_cost (X1) ≤ total_cost(X*), X* = 

X1, total_cost (X*) = total_cost(X1). 

Step10. Stopping criterion. If Ite ≥ Max_Ite, 

record the optimal solution X*, calculate 

total_cost(X*), and stop procedure. 

Otherwise, go back to Step 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 1. Variable neighborhood descent algorithm 

 

2.3. Variable Neighborhood Descent (VND) 

We proposed a tabu search algorithm 

incorporating two neighbourhood structures to 

explore different possibilities of a solution. Here, 

we also applied the VND in the local search phase 

to explore another possibility of the solution. In 

this VND, we applied three different neigh-

borhoods to avoid local optimal. 

 

3. RESULTS AND DISCUSSION 

3.1. Test Instances 

The test instances for the IRPSDTW were 

performed on the existing test instances for the 

VRP. They were generated from Solomon's data 

set [42], with 100-node instances containing data 

similar to Huang & Lin [6]. The penalty for 

violating the time windows is small at 0.1 per 

minute. Solomon's benchmark data for time 

windows is standardized from 0 to 480. 

 

3.2. Algorithm Verification 

For verification, Tabu VND (TVND) is first 

applied to solve datasets listed in Table 1. In this 

dataset, the time windows are ignored, and the 

time windows constraint is related to working 

hours, as proposed by Huang & Lin [6]. The 

results are being compared with those obtained 

 

 Algorithm2. VND 

 

Input: The set of neighborhood structures Nk, for 

k = 1, 2, . . . , kmax (swap, insert, 2-opt) 

1. Initialization: Find an initial solution x; 

2. Repeat 

3.     improve=false  

4. k1 

5. while k≤kmax do 

6. x’Local Search (x)  

7. if f(x’) < f (x) then           

8.     improve=true 

9.     xx’ 

10. end if 

11. kk+1  

12. until improve=false 

13. return x 
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from Ant Colony Optimization (ACO), and 

Modified ACO (MACO) proposed previously. 

The conventional ACO minimises travel distance 

and has a higher stock-out cost than MACO. The 

gap is obtained from the difference between 

TVND with MACO.  

As shown in Table 1, the proposed algorithm 

can solve the IRPSDMI instances and get the 

solution nearly the same as the result of MACO. 

Our algorithm performs well for clustered 

instances, uniformly distributed and mixed 

instances, with the average gap with ACO being -

9.0% and MACO 0.1%. Although the proposed 

algorithm could not outperform MACO in some 

instances, the current results are considered 

efficient and robust for solving the IRPSDMI. 

However, the computational time could not be 

compared directly due to different specifications. 

The uncertainty might affect the overall result 

depending on the value of demand when running 

the instances. A t-test is conducted to compare the 

results between ACO and MACO with TSVND 

(Tabel 2). Based on the paired sample t-test, the 

result between ACO and TSVND is significantly 

different at level 0.01. although slightly worse 

than MACO, the t-test result shows that the 

difference is insignificant, indicating that the 

proposed algorithm still could perform well. 

 

3.3. Result 

We run our algorithm in Solomon bench-

marks which are divided into three categories: C-

type (clustered customers), R-type (uniformly 

distributed customers) and RC-type (a mix of R 

and C types). Parameter selection may influence 

the quality of the computational results. Thus, for 

this problem, we set the parameter with the details 

below: 

a. tabu list = 7 

b. tabu tenure = 3 

c. Max_Item = 2500 

d. aspiration criterion = 1% 

Table 1. Comparison of ACO [6], MACO [6], and Tabu VND 
 

Data Set ACO (1) MACO (2) TS (3) Gap ((1)-(3))/(1) (%) Gap ((2)-(3))/(2) (%) 

c101 22197.0 21240.0 21663.0 -2.4% 2.0% 

c102 18590.8 13598.9 13583.9 -26.9% -0.1% 

c103 19861.8 12960.0 13665.8 -31.2% 5.4% 

c104 21346.2 21140.3 19623.5 -8.1% -7.2% 

c105 19840.8 17886.7 16895.0 -14.8% -5.5% 

r101 20607.8 19976.7 19756.1 -4.1% -1.1% 

r102 15121.5 15083.4 15083.4 -0.3% 0.0% 

r103 13854.4 13884.5 13854.4 0.0% -0.2% 

r104 14348.1 14131.5 14211.8 -0.9% 0.6% 

r105 14893.5 13414.0 13414.0 -9.9% 0.0% 

rc101 20294.3 19923.2 20167.9 -0.6% 1.2% 

rc102 22486.0 20082.9 20797.0 -7.5% 3.6% 

rc103 20881.8 19726.7 20167.4 -3.4% 2.2% 

rc104 21356.9 18244.7 19342.3 -9.4% 6.0% 

rc105 22179.8 19815.9 18701.4 -15.7% -5.6% 

Average -9.0% 0.1% 
 

Table 2. Paired Sample t-test for ACO-TSVND and MACO-TSVND 

  ACO TSVND MACO TSVND 

Mean 19190.71 17395.14 17407.29 17395.14 

Variance 9460012 9553435 9971260.40 9553435 

Observations 15 15 15 15 

Pearson Correlation 0.81  0.97  
Hypothesized Mean Difference 0  0  
df 14  14  
P(T<=t) one-tail 0.001**   0.474   

** significant at level 0.01     
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Table 3. IRPSDTW with tabu VND result 
 

Instances 

Best results 

Average 

Standard 

deviation 

(%) 

Time 

(second) 
Stock 

out cost 

Travel 

cost 

Failure 

cost 

Total 

cost 

c101 7453.7 15586.3 6833.8 29873.7 31158.3 4.30% 497 

c102 5969.7 12264.1 5931.9 24165.8 24649.1 2.00% 503 

c103 3503.4 15780.1 4340.0 23623.5 23624.2 0.00% 606 

c104 6278.8 15048.7 5567.5 26895.0 26948.8 0.20% 576 

c105 5757.1 15430.7 4547.9 25735.8 26541.3 3.13% 515 

r101 3598.0 17161.1 8053.3 28812.4 29014.0 0.70% 564 

r102 8456.6 10953.7 3384.5 22794.8 23038.7 1.07% 564 

r103 6822.3 9469.7 2678.2 18970.2 18971.1 0.01% 561 

r104 6504.2 13003.4 2572.6 22080.2 22228.1 0.67% 527 

r105 6658.1 11778.8 2355.6 20792.5 21000.5 1.00% 502 

rc101 4753.3 20756.7 5919.8 31429.8 31524.0 0.30% 563 

rc102 10759.1 14986.3 4551.6 30297.0 30660.6 1.20% 514 

rc103 3416.7 20888.3 5362.4 29667.4 30919.3 4.22% 569 

rc104 3919.9 20706.2 5216.3 29842.3 30101.9 0.87% 584 

rc105 6827.3 17820.1 5554.0 30201.4 30382.6 0.60% 604 

Average 1.35% 550 

 

This parameter is chosen after several trials 

and seems to give the best result. Each dataset is 

run 50 times to understand the algorithm's 

robustness. In this computational experiment, two 

types of sets, 1 and 2, are investigated due to their 

different time windows nature. Table 3 shows the 

best result, average result, and standard deviation 

based on the results of 50 times running.   

Table 3 shows that by adding the time 

windows constraint, the total cost incurred is 

higher compared with the results of IRPSDMI. As 

additional constraints are applied, the solution 

space is narrowed down, and the probability of 

being stocked out increases. It might happen due 

to time limitations resulting in different routes 

between IRPSDMI and IRPSDTW, although with 

the exact location coordinate and parameter. The 

stock-out cost increases because the vehicle fails 

to fulfil the customers demand in the interval. In 

this study, the challenge is to improve the solution 

for the time windows constraint. The narrower the 

time window of a certain customer, the more 

difficult it is to insert this customer into a route and 

find a feasible solution. 

 

3.4. Sensitivity Analysis and Managerial 

Implications 

Furthermore, this research examined the 

impact of adding car cost per unit vehicle usage 

and vehicle count on the solutions. The depot and 

customer coordinates were retrieved from 

Solomon's 56 benchmark issue RC101. The cost 

of transportation will grow as the number of cars 

increases, whereas the cost of stocking out will 

drop. Fig. 2 demonstrates that using ten trucks will 

reduce the overall cost. Although increasing the 

number of vehicles reduces the likelihood of 

stock-outs, the reduction in stock-out costs may 

not be sufficient to offset the rise in transportation 

expenses, increasing the overall cost. 
 

 

Fig. 2. The trade-off between transportation cost 

and stock-out cost  
 

As the vendors are liable to fulfil the retailers' 

demand, providing a recourse strategy will be 

beneficial as it can reduce the total cost, including 

travel costs, stock-out costs, and failure costs. 

Based on the results of our study, setting the 

delivery schedule using a wide time window can 
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help create a more flexible route. Sometimes, a 

penalty cost should not be incurred although the 

vendor delivers after or before the time windows 

constraint. Furthermore, using the recourse 

strategy where vehicles return to the depot to fulfil 

retailers' orders can also minimize the total cost if 

the number of vehicles used is adequate. On the 

other hand, replenishment strategies may differ 

and should be assessed considering various 

retailer/customer demand conditions. 

 

4. CONCLUSION 

This study has formulated a model for the 

multi-item replenishment problem in uncertain 

demand with time windows. A hybrid tabu search 

and variable neighbourhood descent are being 

introduced to minimise total costs from trans-

portation, vehicle failure, stock out cost and 

penalty cost. Suppliers are liable to meet the 

demands so that a recourse plan may cut overall 

costs, including travel, stock out, and failure costs. 

According to our analysis, adopting large time 

frames may assist develop a more flexible delivery 

path. In certain circumstances, a vendor shouldn't 

be penalized for delivering after or before the 

deadline. Using the recourse method, where 

vehicle return to the depot to fulfil store orders, 

may also save costs if the quantity of vehicles 

utilized is sufficient. 

Several scenarios for modelled demand 

uncertainty can be developed for future research, 

and two-phase stochastic programming should be 

used to solve the problem. Furthermore, as the 

number of vehicles directly impacts the total cost, 

different vehicle sizes can also be considered to 

minimize stock-out costs and travel costs.  
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