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Capacitated Vehicle Routing Problem (CVRP) is known as an NP-

hard problem. It is because CVRP problems are very hard for finding 

optimal solutions, especially in large instances. In general, the NP-

hard problem is difficult to solve in the exact method, so the 

metaheuristic approach is implemented in the CVRP problem to find 

a near-optimal solution in reasonable computational time. This 

research uses the DPSO algorithm for solving CVRP with ten 

instances of benchmark datasets. DPSO implementation uses tuning 

parameters with the One Factor at Time (OFAT) method to select the 

best DPSO parameters. The outcome objective function will be 

compared with several PSO models proposed in previous studies. 

Statistical test using One Way Reputed Measure ANOVA is needed 

to compare algorithm performance. First, ANOVA uses for 

comparing’s results. Then, ANOVA is also used to test DPSO’s 

performance compared with DPSO-SA, SR-1, and SR-2 algorithm. 

The computational result shows that the basic DPSO algorithm not 

competitive enough with other methods for solving CVRP.  
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1. INTRODUCTION 

Vehicle Routing Problem (VRP) is a problem 

design closely related to logistics and distribution 

activities [1]. Capacitated Vehicle Routing Problem 

(CVRP) is one of the VRP problems first 

introduced by Dantzig and Ramser in 1959 [2]. 

CVRP is a design problem that has the objective 

function of minimizing the total cost of distribution 

from the depot to several locations to meet 

consumer demand. In the CVRP model, the 

distribution process uses several similar vehicles 

with a uniform capacity to deliver to consumers [3]. 

CVRP is a broad and general problem, so 

researchers develop a CVRP model to be more 

specific according to the problem characteristic. 

Some of the CVRP model developments include 

the aim of being able to handle several additional 

constraints such as the number of stochastic 

requests [4], time constraints or time windows [5], 

fuzzy demand constraints [6], etc. CVRP is 

considered the key to deal with operational 

problems related to determining vehicle routes. The 

difficulties in solving CVRP problems depend on 

the problem's complexities. 
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In terms of problem complexity, CVRP is an 

NP-hard problem. Solving the CVRP problem is 

often faced with the difficulty of obtaining optimal 

results and long computational times. Therefore, 

further research is needed on the right approach 

method to get optimal computation time results [7]. 

The number of points and constraints makes CVRP 

problems very difficult to solve using the exact 

method or conventional methods. Finding the 

optimal solution of NP-hard problems with large 

instances is usually using a metaheuristic algorithm 

approach. Several previous studies have developed 

a metaheuristic approach in solving CVRP pro-

blems, such as using genetic algorithms [8], particle 

swarm optimization (PSO) [9], tabu search [1], and 

several other algorithms. This study will further 

solve CVRP problems using the Particle Swarm 

Optimization (PSO) algorithm's basic model. 

PSO is a population-based metaheuristic 

algorithm invented by Kennedy and Eberhart [10]. 

The PSO algorithm adapts the behavior of a group 

of birds or fish in nature by simulating the 

movement of individuals in the group to obtain 

optimal values. The PSO algorithm has several 

advantages, such as can be used for stochastic 

objective functions, can easily get out of the 

optimal locale, and simple in programming and 

implementation. We also do parameter tuning for 

finding optimal parameter values. Besides, the 

determination of initial solutions will not affect the 

optimal results obtained [4]. The PSO algorithm 

uses individual physical movements in the swarm. 

It has a flexible and balanced mechanism to be able 

to adapt to the best values obtained by individuals 

and swarms [9]. Initially, the PSO algorithm is in-

tended for continuous problems, but several studies 

have developed the PSO algorithm applied to 

discrete problems. Research related to the appli-

cation of Discrete Particle Swarm Optimization 

(DPSO) on CVRP problems has been carried out by 

Chen et al. [9], who combined DPSO with the 

Simulated Annealing (SA) algorithm and research 

by Ai and Kachitvichyanukul [7] which developed 

DPSO with two different representations of 

solutions. 

The initial idea of the PSO algorithm is to 

solve the continuous optimization problem. Based 

on two main vectors' role, namely the position 

vector xi and the acceleration vector vi, whose 

values are always changing in continuous space. 

For discrete problems, the vector xi is associate with 

a feasible route along with the total distance value. 

The biggest problem with the DPSO algorithm is 

how to formulate the acceleration vector vi to fit the 

context of the routing problem. 

Quite a lot of research has been developed in 

transforming PSO to solve problems in Discrete 

PSO problems. The transformation pattern has 

developed based on the basic idea of PSO, namely 

that the swarm members can move randomly, and 

tend to be in the best position in the past and 

consider probabilities. The advantage of this 

algorithm is its ease of use with fewer parameter 

tunning to adjust. DPSO has been successfully 

applied to a vast range’s applications such as 

function optimization, neural network training, task 

assignment, and scheduling problem [11]. 

Several studies using the PSO algorithm to 

solve VRP problems include solving capacitated 

vehicle routing problems using PSO was investi-

gated by Ai and Kachitvichyanukul [7], showing 

that the second solution representation (SR-2) is 

better than representation SR-1. Zou et al. [12] also 

researching solving multimodal-optimization pro-

blems using PSO. Their study results indicate that 

the close neighbor mobility optimization algorithm 

performs better than most single-objective multi-

modal algorithms. Singh and Singh [13] utilizes the 

PSO algorithm to solve transportation problems. 

The study results show that the performance of the 

proposed algorithm is statistically validated using 

the paired t-test. 

This study will focus on solving CVRP pro-

blems with the basic DPSO algorithm using the 

data used by Chen et al. [9] in their research. This 

study will further examine the basic DPSO 

algorithm by setting its parameters in such a way 

that it can produce optimal values. This study's 

parameter tuning process is based on some 

literature and uses the One Factor at Time (OFAT) 

method to get the best parameters. Then, the best 

parameter uses for implementing the DPSO 

algorithm. The DPSO results in this problem will 

be compared to the two previous studies using 

statistical analysis. This study investigates whether 

the DPSO algorithm with parameter tuning is used 

in this problem competitive enough compared with 

Chen, SR-1, and SR-2 algorithms. So, the contri-

bution of this research is not to propose a new 

algorithm, but this research used a basic DPSO 

algorithm without any hybridization or modify-

cation to show what is the DPSO standard with 

parameter setting can compete with Chen, SR-1, 

SR-2.  

This study also provides statistical analysis for 

comparing the average of objective value between 
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basic DPSO with the other three algorithms. 

Although this research uses basic DPSO without 

modification or hybridization, this research is 

conducted with parameter tuning with several 

combinations. After that, the statistical analysis is 

carried out to prove the proposed algorithm's 

performance with the previous best-known 

solution.  

 

2. RESEARCH METHODS  

This section consists of the DPSO algorithm 

in the CVRP problem, parameter tuning methods, 

and statistical analysis used in this research. 
 

2.1. CVRP Problem 

There are several VRP problem variations, 

one of which is the Capacitated Vehicle Routing 

Problem (CVRP). In CVRP problems, there are 

additional constraints in the form of vehicle 

capacity. CVRP define as the problem of deter-

mining the optimal route in meeting consumer 

demand to obtain the optimal and minimum possi-

ble travel costs, travel times, and the number of 

vehicles [14]. The mathematical model of the 

CVRP problem is model as follows [15]: 

The objective function of the CVRP 

mathematical model:   

Minimize  

𝑍 = ∑ ∑ ∑ 𝐶𝑖𝑗
𝑘 𝑋𝑖𝑗

𝑘

𝑁

𝑗=0

𝑁

𝑖=0

𝐾

𝑘=1

 (1) 

Subject to:  

𝑋𝑖𝑗
𝑘   = {

1,   if vehicle k has a route from i to j

0,   if nothing
 (2) 

∑ ∑ 𝑋𝑖𝑗
𝑘 = 1, 𝑗 = 1, 2, . . . , 𝑁

𝑁

𝑖=0

𝐾

𝑘=1

 (3) 

∑ ∑ 𝑋𝑖𝑗
𝑘 = 1, 𝑖 = 1, 2, . . . , 𝑛

𝑁

𝑗=0

𝐾

𝑘=1

 (4) 

∑ 𝑋𝑖𝑡
𝑘 −

𝑁

𝑖=0

∑ 𝑋𝑡𝑗
𝑘 = 0, 𝑘 = 1, 2, . . . , 𝐾; 𝑡 = 1, 2, … , 𝑁 

𝑁

𝑗=0

 (5) 

∑ 𝑞𝑗 (∑ 𝑋𝑖𝑗
𝑘

𝑁

𝑖=0

)

𝑁

𝑗=0

≤ 𝑄𝑘 , 𝑘 = 1, 2, . . . , 𝐾 (6) 

∑ 𝑋0𝑗
𝑘

𝑁

𝑗=1

≤ 1, 𝑘 = 1, 2, . . . , 𝐾 (7) 

∑ 𝑋𝑖0
𝑘

𝑁

𝑖=1

≤ 1, 𝑘 = 1, 2, . . . , 𝐾𝑠 (8) 

𝑋𝑖𝑗
𝑘  ∈ {0,1}, 𝑖, 𝑗 = 0, 1, 2, . . . , 𝑁𝑛;  𝑘 = 1, 2, . . . , 𝐾 (9) 

In the above mathematical model, the nota-

tion N represents the number of consumers, K is 

the number of vehicles used, is the distance trav-

eled from consumer i to consumer j using vehicle 

K, and is the distance traveled from consumer i to 

consumer j using vehicle K. Additionally, the 

notation i, represents the capacity of the general. 

The detailed notation can be seen in Table 1. 

The objective function of equation (1) is to 

minimize the total distance traveled by the vehicle. 

Constraints in equations (3) and (4) explain that 

each customer will only be visited by one vehicle. 

Equation (5) show that the number of vehicles 

leaving and returning to the depot is the same. 

Equation (6) explains that the cargo carried by the 

vehicle will not exceed the predetermined capa-

city. Equations (7) and (8) explain that the vehicle 

is only used once in a distribution cycle, and 

equation (9) is used to ensure that the variable 

taken is an integer number (0 or 1). 

Table 1. Notation of mathematical model 

Parameters Description 

𝐶𝑖𝑗
𝑘  Distance traveled from depot i to agent j 

𝑋𝑖𝑗
𝑘  Vehicle k travels from depot i to agent j 

qj Demand at agent j 

Qk Carrying capacity of vehicle k 

𝑋𝑖𝑗
𝑘  Route of vehicle k start from depot 0 

 

2.2. DPSO for Solving CVRP Problem 

The PSO algorithm was first developed by 

Eberhart and Kennedy [10] imitated on swarm 

behavior in nature, such as a group of fish or birds 

[16]. Almost all cases of optimization, computa-

tional intelligence, and application design use the 

PSO algorithm. This algorithm is also usually 

combined with other algorithms according to the 

case's specifications to be solved. The PSO 

concept is usually implemented to non-linear 

optimization problems. Also, PSO can be used to 

problems that are very difficult to find the global 

optimum and get out of the optimal local trap [16]. 

The PSO algorithm has several parameters, 

including particles, particle velocity, personal 

best, and global best. The main components of the 

PSO algorithm are position and velocity [17]. The 

initial nodes of the particles in the population are 

determined randomly within the search area's 

boundary. Also, the objective value calculates 

from that point for each particle. The initial velo-

city is determined randomly within the specified 

velocity range. Based on each particle's objective 
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value, each individual's best value can be deter-

mined, namely the Personal Best (Pbest) and the 

best score in the group called Global Best (Gbest). 

This research will use an optimizing model 

introduced by Eberhart and Shi [18] as follows: 
 

𝑉𝑖𝑑 = 𝑤 𝑥 𝑉𝑖𝑑 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖𝑑) (10) 

+ 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖𝑑)  

  

𝑋𝑖𝑑 =  𝑋𝑖𝑑 +  𝑉𝑖𝑑 (11) 
 

In equation 10 and 11, 𝑉𝑖𝑑 represents the 

velocity of a particle, 𝑋𝑖𝑑 is the position of a 

particle, 𝑤 is inertia weight, 𝑐1 and 𝑐2 represent 

the learning parameter. Meanwhile, 𝑟𝑎𝑛𝑑 is a 

random number with a range 0-1.  

The procedure for implementing the DPSO 

algorithm not different enough from the PSO 

algorithm. It begins by determining the initial 

location and velocity, determining other para-

meters, performing constraint handling, deter-

mining the Pbest and Gbest values, and updating 

the individual speed and position. This step is 

carried out until the termination criteria are 

reached [6]. The results obtained from the DPSO 

algorithm depends on the parameter values used 

[7]. These parameters include swarm size, 

learning of cognitive learning and social learning, 

inertia weight, etc. Therefore, DPSO 

implementation requires a parameter tuning 

process to determine the best parameter values to 

obtain optimal results. In order to get an optimal 

result, the fitness or objective value of the 

algorithm is evaluated by the following equation: 
 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =  ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑁

𝑗=0

𝑁

𝑖=0

𝐾

𝑘=1

 

(12) 

 

In general, the fitness function is to minimize 

the total cost. The DPSO algorithm's implementa-

tion begins with the initialization of particles and 

particle velocity in the swarm, setting parameters 

and constraint handling, calculating the fitness 

value, determining Pbest and Gbest, updating the 

velocity and location of particles. These steps 

repeat until they meet the termination criteria. The 

DPSO algorithm for CVRP problems in detail 

shown in Fig. 1. To implement the DPSO algo-

rithm for the CVRP problem, the algorithm's 

solution follows previous research by Chen et al. 

[9]. 

For example, the CVRP problem has N 

number of customers that have to be served by K 

number of vehicles. So, there are 𝑁 × 𝐾 

dimensions where each particle consists of K 

sections, and each section has N discrete points. 

As we know that the value of discrete points is 0 

or 1, so value 1 represents that a customer is served 

by a vehicle. As shown in Fig. 2, there is a solution 

representation if we have eight customers and two 

vehicles in the CVRP problem. 
 

 

Fig 1. Basic DPSO’s pseudocode 

 

Fig 2. DPSO’s solution representation 

Because the problem is a CVRP problem, we 

have to ensure that the DPSO algorithm follows 

the VRP constraints. Every customer can only be 

served with one vehicle, and the length of each 

route is less than the constraint, and the total 

demand cannot be more than the capacity of 

vehicles. 

2.3. Parameter Tuning 

Several parameters are used in the DPSO 

algorithm, including swarm size, learning factors, 

maximum iterations, and inertia weight [19]. 

Determining the optimal parameter depends on the 

type of problem, and the standard rules are not 

determined. In this study, the parameter tuning 

Start 

Parameter Setup 

Initialize Swarm; 

Evaluate the objective function of each particle; 

Evaluate the objective function of each particle 

Repeat 

do 

 for all particle i  

- Calculate the new velocity of the particles 

- Calculate the new position of the particle 

- Constraint Handling 

- Evaluate the objective function value of the particles 

- Find new P Best and G Best particles 

- If f(xi) < f(P Besti) Then P Besti = xi 

- If f(xi) < f(G Besti) Then G Besti = xi 

- Update the location and velocity of the particles 

- Until Termination Criteria 

End for 

Calculate non-improvement 

Until Stopping Criteria 

Print Result 

End 
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process used for choosing the following four 

parameters: 

a. Inertia Weight (w) 

The determination of the optimal inertia 

weight value to improve the DPSO algo-

rithm's performance has been researched and 

developed. The inertia weight value affects 

the particles' velocity, determining the 

probability of moving and searching for 

particles.  Shi and Eberhardt explained that the 

inertia weight value ranging from 0.9 to 1.2 

could improve the DPSO algorithm's 

performance [18]. Other studies have shown 

an inertia weight value between 0.4-0.9 

suitable for quite complicated problems [20]. 

b. Learning Factors 

Learning factors in the DPSO algorithm 

include cognitive learning and social learning. 

Cognitive learning represents how much the 

Pbest value contribution to calculating the velo-

city of particles. Meanwhile, social learning 

describes the influence of GBest in calculating 

the velocity value. Particle velocity is impor-

tant to pay attention to avoid premature 

convergence. The value of learning factors c1 

= 2, c2 = 2 is recommended for obtaining 

optimal results [20]. For DPSO parameters, 

[18] used 0.5 for cognitive learning (c1) and 

social learning (c2), respectively. Another 

study by Wang et al. [21] used learning factor 

values ranging from 0.5 to 2.5. 

c. Swarm Size 

The determination of the number of particles 

directly affects computation speed and the 

speed of finding the optimal result. Several 

studies explain the technique of determining 

the number of particles. The optimal number 

of particles determine in the 5𝑥𝑁 − 10𝑥𝑁 

range, where 𝑥𝑁 is the number of variables 

[22]. Other studies have shown that the 

optimal number of particles is between 10-30 

particles [23]. Meanwhile, Wang et al. [21] 

used the number of swarms varying from 25 

to 125. 
 

2.4. Statistical Analysis 

This study uses statistical analysis to assess 

the selected DPSO parameters' performance and 

test the DPSO algorithm's performance compared 

to other algorithms. Statistical analysis of data 

includes descriptive statistics and hypothesis 

testing. Descriptive statistics are needed to see the 

details of the observed data. The hypothesis test 

results in this study prove the difference in the 

average value between the experimental data. 

The hypothesis test used in this research is 

One Way Repeated Measure ANOVA. It aims to 

compare more than two average experiments with 

different treatments but use the same instance. 

Before doing the Repeated Measure One Way 

ANOVA test, it must do normality and the 

sphericity test. The normality test was carried out 

using the Kolmogorov-Smirnov test and the 

Saphiro-Wilkins test. While the sphericity test was 

carried out using Muchly's test. 

 
3. RESULTS AND DISCUSSION 

In this section, DPSO is used to solve basic 

CVRP problems by using benchmark data. The 

parameters used in the implementation of DPSO 

are the best parameters determined based on the 

tuning parameters using the OFAT method. The 

optimal results obtained from this algorithm will 

compare with the DPSO-SA, SR-1, and SR-2 

algorithms. 
 

3.1. Data 

The dataset used in this research includes ten 

benchmark data used by Chen et al. [9] and Ai and 

Kachitvichyanukul  [7], as shown in Table 2. The 

ten instances then solved using DPSO using 

Visual Studio applications and C# programming 

languages. In this research, simulations will carry 

out using a laptop with Intel Core i5 @ 1.8GHz 

quad-core with Turbo Boost-8GB RAM. 

Table 2. Benchmark datasets 

Instances Customers Vehicle 

An33k5 32 5 

An46k7 45 7 

An60k9 59 9 

Bn35k5 34 5 

Bn45k5 44 5 

Bn68k9 67 9 

Bn78k10 77 10 

En30k3 29 3 

En51k5 50 5 

En76k7 75 7 
 

3.2. Parameter Tuning 

The parameter setting in this study was 

carried out for four parameters, namely Inertia 

Weight (w), cognitive learning factor (c1), social 

learning factor (c2), and swarm size (N). The 

parameter tuning process begins with selecting the 

number of candidate values for each parameter. 
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After that, the determination of the optimal para-

meter value uses the OFAT method. The list of 

parameters in detail listed in Table 3. The selec-

tion of parameter value combinations is based on 

a literature study and refers to the parameters used 

in the study [21].  
Table 3 listed the parameter combination for 

each experiment in every factor. The OFAT 
method changes the test variable's value and gives 
a fixed value for other variables. For example, 
when you want to determine the best value for c1, 
we set a fixed value for inertia parameters weight, 
swarm size, and c2. This study conducted four 
trials for inertia factors weight, four trials for 
factor c1, three trials for factor c2, and three 
experiments for the swarm size factor. 

Each parameter's combination is implement-
ted in DPSO the algorithm to determine the 
optimal value in all instances. Each experiment 
was run by replicating 30 times. The mean value 
for the objective function and the computation 
time is calculated for each experiment in each 
instance. After that, the experiment results were 
compared to see the effect of that parameter on the 

objective value and computation time for each 
parameter. The graph of the objective value and 
computation time for each factor can be seen in 
Fig. 3, Fig. 4, Fig. 5, and Fig. 6. 

Table 3. Parameter value combinations 

Parameter 

 w c1 c2 N Trial 

Inertia Weight 

(w) 
0.9 2 1 25 Trial 1 

0.3 2 1 25 Trial 2 

0.4 2 1 25 Trial 3 

0.5 2 1 25 Trial 7* 

Learning 

factor (c1) 
0.5 1 1 25 Trial 4 

0.5 1.5 1 25 Trial 5 

0.5 0.5 1 25 Trial 6 

0.5 2 1 25 Trial 7* 

Learning 

factor (c2) 
0.5 2 1 25 Trial 7* 

0.5 2 1.5 25 Trial 8 

0.5 2 2 25 Trial 9 

Swarm Size 

(N) 
0.5 2 1 25 Trial 10 

0.5 2 1 50 Trial 11 

0.5 2 1 75 Trial 12 

 

     

Fig 3. Comparison graph of objective values and computation time on inertia weight (w) factor 

     

Fig 4. Comparison graph of objective values and computation time on learning factor (c1) 
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Fig 5. Comparison graph of objective values and computation time on learning factor (c2)  

    

Fig 6. Comparison graph of objective values and computation time on particle number (N)  

Fig. 3, Fig. 4, Fig. 5, and Fig. 6 shows that 

each parameter has a different objective value and 

computation time for each experiment. However, 

there is a similarity in the pattern for each experi-

ment within a factor group for several instances. 

Besides, there are differences in the objective 

value and computation time between experiments 

that are not significantly different. So, it is difficult 

to determine whether there is a difference between 

the means. Therefore, a statistical analysis process 

using SPSS software is needed to see the differ-

ences in the respective experiments' value for each 

factor. 

The next process is to perform statistical tests 

to determine the average value between the 

experiments in one factor. The statistical test used 

the One-way Repeated Measures ANOVA Test. 

This statistical test is needed because there are 

more than two experiments with the same in-

stances that will be compared. Before conducting 

the Repeated Measures One Way ANOVA test, 

the first step is checking the assumption of the 

normality and homogeneity of variance. Further-

more, the Repeated Measures One Way ANOVA 

test was conducted with the following hypothesis: 
 

H0:𝜇𝐴 = 𝜇𝐵 = ⋯ = 𝜇𝑛  ; 𝑛 = number of trials 

H1:  at least one different experimental mean 

The hypothesis above explains that when the 

significance value is less than the significance 

level = 0.05, the decision to be taken is to reject 

H0, which means a difference in the average for 

one or more experiments. On the other hand, if the 

P-value significance is more than 0.05, then the 

decision taken fails to reject H0, which means that 

there is no difference in the average between trials. 

Repeated Measures One Way ANOVA was 

conducted for all four parameter factors. The 

results obtained are: 

a. Inertia factor weight (w), there is no significant 

mean difference between trials 1, 2, 3, and 7. 
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b. In the cognitive learning factor (c1), there is a 

significant difference in the average in several 

experiments. The mean difference was 

between experiments 4 and 5, experiments 4 

and 7, experiments 6 and 7, and experiment 5 

and 6. 

c. Cognitive learning factor (c2) shows no 

significant average difference between experi-

ments 7, 8, and 9. 

d. Swarm size factor, there is a difference in the 

average between the experiments conducted. 

The mean difference is found in experiments 

10 and 12 and trials 11 and 12. 

The results of the hypothesis test used for 

determining the best parameter value. The inertia 

weight factor and cognitive learning are not 

affected by changes in the value of the parameters. 

However, the best parameter is determined by 

considering the average optimal value and the 

average computation time required. The selected 

parameter is an experiment with parameters that 

can produce optimal results in an efficient time. 

On the inertia weight factor, the smallest objective 

value is reached by experiment 2 that equal to 

1673.57, while the shortest computation time is 

obtained by experiment 1. However, because the 

difference in computation time between experi-

ment 2 and experiment 1 is only 0.01, the selected 

parameter is experiment 2 with an inertia weight 

value of 0.3. However, for social learning factors 

(c2) there is also no significant difference in mean. 

The lowest objective value was obtained in experi-

ment 8 = 1738.43, while the fastest computation 

time is experiment 8 with an average time of 1.46. 

Therefore, the selected parameter was experiment 

8 with the parameter value c2 = 1.5. 

Furthermore, the Repeated Measures One 

Way ANOVA test results show at least one 

different experimental mean value in cognitive 

learning parameters (c1) and swarm size. 

However, hypothesis testing results can only 

conclude that there is at least one different average 

value. Therefore, the selected parameters' deter-

mination is based on the difference in the average 

experiment written in the Mean Difference (i-j) 

column in the Pairwise Comparison Table. Based 

on the table, the best cognitive learning parameters 

(c2) is 1.5, while the swarm size is 50. 
 

3.3. DPSO Implementation Result 

The selected parameters that have been 

determined in the previous section are used in the 

implementation of the DPSO algorithm. Then, the 

DPSO uses to solve the ten instances written in 

Table 2. Each instance is replicated 10 times with 

parameter values w = 1.3, c1 = 1.5, c2 = 1.5, and 

N = 50. The computation is then done for the 

maximum computation time is the same as the SR-

1 experiment by Ai and Kachitvichyanukul [7]. 

The DPSO experiment results will be compared 

with the DPSO-SA computation results by Chen 

et al. [9], SR-1, and SR-2 [7]. Among the three 

experiments, the average computation time 

generated by the SR-1 algorithm is the lowest 

compared to the other two algorithms. Therefore, 

the DPSO computation uses the SR-1 time to find 

out in the shortest time whether there is a 

significant difference in the mean of objective 

value from the DPSO algorithm and other 

algorithms. The computational results comparison 

between algorithms showed in Table 4. 

Table 4. Computational result comparison 

Instances 
Objective Function 

BKS* Chen SR-1 SR-2 DPSO 

An33k5 661 661 661 661 661.354 

An46k7 914 914 914 914 1554.885 

An60k9 1354 1354 1366 1355 2246.501 

Bn35k5 955 955 955 955 1271.618 

Bn45k5 751 751 751 751 1319.581 

Bn68k9 1272 1272 1278 1274 2409.634 

Bn78k10 1223 1239 1239 1223 2487.445 

En30k3 534 534 541 534 779.125 

En51k5 521 528 521 521 950.238 

En76k7 682 688 691 682 1481.925 

*BKS: Best-known Solution  
 

Table 4 shows that the Chen, SR-1, and SR-2 

algorithms' objective values produce the same 

value for some instances and not significantly 

different. Meanwhile, the objective value 

generated by the DPSO algorithm with minimal 

computation time has not been able to achieve the 

best value from other algorithms. Furthermore, the 

metaheuristic performance test process is carried 

out using statistical tests to determine the 

difference in the mean value of the four algorithms 

and to find out which algorithm has a better 

resolution for the same data. 

The statistical test used to analyze the 

algorithm's performance in this study was the 

Repeated Measure One Way ANOVA Test. This 

test was chosen because it aims to compare more 

than two algorithm models but use the same data 

instances. The variable that will be compared in 

statistical analysis is the total cost as the objective 
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value. Repeated Measure One Way ANOVA test 

can be done when the data meet the normally 

distributed assumptions and have equal variance. 

The result of the normality test showed in detail in 

Table 5. 

Table 5. Normality test’s result 

  
Kolmogorov-

Smirnova 
Shapiro-Wilk 

 Alg. Stat. df Sig. Stat. df Sig. 

Obj. 

Chen 0.173 10 0.2* 0.902 10 0.231 

SR-1 0.174 10 0.2* 0.907 10 0.261 

SR-2 0.170 10 0.2* 0.908 10 0.270 

DPSO 0.177 10 0.2* 0.912 10 0.297 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 
 

The purpose of the normality test is to prove 

that the data have a normal distribution. The hypo-

thesis in this normality test is as follows: 
 

H0: the data is normally distributed  

HA: the data is not normally distributed 
 

Mauchly's Sphericity Test is a measurement 

used for validation on repeated measures 

ANOVA. Sphericity is an important assumption in 

the repeated measure ANOVA test, which 

measures whether there are differences in the 

variance of all possible pairs of independent 

variables. The hypothesis of Mauchly's Sphericity 

Test is as follows: 

H0: variance data is equivalent 

HA: variance data is not equivalent  
 

Based on the data in Table 5, it can be seen 

that the significance value of each model for both 

the Kolmogorov-Smirnov Test and the Shapiro-

Wilkin Test is more than 0.05. Therefore, the 

decision that can be taken is failing to reject H0, 

which means proving the data for each model have 

a normal distribution. Furthermore, the ANOVA 

Repeated Measure Test using SPSS resulted in the 

following tables: 

Table 6. Mauchly’s sphericity test’s result 

Subject 

Effect 

Mau

chly 

Approx. 

Chi-

Square 

df Sig. 

Epsilonb 

Greenhous

e-Geisser 

Huynh

-Feldt 

Low-

bound 

Model 0 117.584 5 0 0.333 0.334 0.333 

 

Test the null hypothesis that the orthonormalized transformed dependent variables' error 

covariance matrix is proportional to an identity matrix. 

a. Design: Intercept 

Within Subject Design: Model 

b. May be used to adjust the degrees of freedom for the averaged test of significance. 

Corrected test are displayed in the Test of Within-Subjects Effect table 

 

Based on Table 6, it can be seen that the P-

value is 0.000, which is less than the significance 

level of 0.05. Therefore, the decision that can be 

taken is to reject H0, which means that the data 

variance is not equal. In the repeated measure 

ANOVA test, if the Mauchly's Sphericity Test 

results do not meet the equivalent variance 

assumption, then the determination of the repeated 

measure ANOVA test results are based on the 

Greenhouse-Geisser improvement value. Green-

house-Geisser is a method used to improve the 

degree of freedom to reduce the Type I Error level. 

Decision making from a repeated-measure 

ANOVA test is based on the Tests of Within 

Subjects Effects that can be shown in Table 7. Test 

of within-subject effects is an important output in 

the Repeated Measures ANOVA Test. In this 

study, the Repeated Measures ANOVA test had 

the following hypothesis: 
 

H0: there is no difference average between the 

algorithm models 

HA: there is a difference in the average between 

the algorithm models 

 

Table 7. ANOVA repeated measures test results 

 Source 
Type III sum 

of squares 
df Mean square F Sig. 

Partial eta 

squared 

Model Sphericity assumed 2946685.131 3 982228.377 24.763 0 0.773 

Greenhouse-Geisser 2946685.131 1 2945515.768 24.763 0.001 0.773 

Hunh-feldt 2946685.131 1.001 2945118.659 24.763 0.001 0.773 

Lower-bound 2946685.131 1 29446685.130 24.763 0.001 0.773 

Error 

(model) 

Sphericity assumed 1070954.622 27 39664.986    

Greenhouse-Geisser 1070954.622 9.003 118948.948    

Hunh-feldt 1070954.622 9.005 118931.700    

Lower-bound 1070954.622 9 118994.958    
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As we know, the basis for decision making 

repeated measures ANOVA in this study refers to 

the Greenhouse-Geisser value. Table 7 shows that 

the significance value is 0.001, which means that 

the decision that can be taken is to reject H0. 

Therefore, it can be concluded that based on the 

repeated measures ANOVA test, there are mean 

differences between the algorithm models tested. 

Furthermore, to determine the average of different 

models and determine which model with the better 

average value can finish by looking at the Pairwise 

Comparison, as shown in Table 8. 

Table 8. Post-hoc analysis 

(I) 

model 

(J) 

model 

Mean 

Difference 

(I-J) 

Std. 

Error 
Sig.b 

95% Confidence 

Interval for 

Difference.b 

Lower 

Bound 

Upper 

Bound 

1 2 -2.1 1.643 1 -7.627 3.427 

3 2.6 1.759 1 -3.317 8.517 

4 -626.632* 125.861 0.005 -1050.05 -203.211 

2 1 2.1 1.643 1 -3.427 7.627 

3 4.7 1.832 0.183 -1.464 10.864 

4 -624.532* 125.383 0.005 -1046.35 -202.717 

3 1 -2.6 1.759 1 -8.517 3.317 

2 -4.7 1.832 0.183 -10.864 1.464 

4 -629.232* 126.589 0.005 -1055.13 -203.332 

4 1 626.632* 125.861 0.005 203.211 1050.053 

2 624.532* 125.383 0.005 202.717 1046.347 

3 629.232* 126.598 0.005 203,332 1055.132 

Based on estimated marginal means 

*. The mean difference is significant at the 0.05 level. 

a. Adjustment for multiple comparisons: Bonderroni. 
 

Based on Table 8, it can be seen in the 

significance column, which proves that there is an 

average difference in the Chen-DPSO model pair, 

the SR1-DPSO model, the SR2-DPSO model. 

Then to find out which average is different and 

which model has a better average value than 

another model that can see in the Mean Difference 

(I-J) column. This pairwise comparison was ob-

tained from a Post-hoc analysis using the 

Bonferroni Procedure method. Table 8 shows that 

the Chen, SR1, and SR2 models are better than the 

DPSO models. Besides, the SR2 algorithm has 

better performance than the Chen and SR1 

algorithms. 

Based on Post-hoc results, further research 

may consider modifying the representation solu-

tion of the basic DPSO algorithm to improve the 

quality of the resulting solution. Besides, further 

research can use the hybridization of metaheuristic 

algorithms to obtain a better solution. The compu-

tation results using DPSO show that the average 

obtained with the minimum time has not been able 

to match the other three algorithms. The optimal 

objective value using DPSO only shows similarity 

to the best objective value ever reported in one 

instance, namely A-n33-k5. It means the basic 

DPSO algorithm needs a long computational time 

to find the best optimal solution compared with 

other algorithms.  The statistical test results show 

that there are differences in the average objective 

value of each algorithm. So, based on the Post-hoc 

analysis, it can be concluded that the basic DPSO 

algorithm has not performed well enough when 

compared to the Chen, SR-1, and SR-2 algorithms. 

Besides, the SR2 algorithm has better perfor-

mance than the Chen and SR1 algorithms. 

 

4. CONCLUSION 

This study implements the DPSO algorithm 

to solve CVRP problems. This research uses the 

OFAT method for selecting optimal parameter 

values. Based on OFAT's results, the best 

combination PSO parameters are w = 0.3, c1 = 1.5, 

c2 = 1.5, and N = 50. After that, the combination 

parameter is implemented in the DPSO algorithm 

to get each instance's best objective. After that, the 

DPSO algorithm's performance was compared 

with the Chen, SR-1, and SR-2 models from 

previous research. The computation results using 

DPSO show that the average obtained with the 

minimum time has not competed with the other 

three algorithms. The optimal objective value 

using DPSO only shows similarity to the best 

objective value ever reported in one instance, 

namely A-n33-k5. It means the basic DPSO with 

parameter setting the only algorithm that needs 

more computational time to find the best optimal 

solution than other algorithms. The statistical test 

results show that there are differences in the 

average objective value of each algorithm. Based 

on the Post-hoc analysis, it can be concluded that 

the basic DPSO algorithm has not competitive 

enough when compared to the Chen, SR-1, and 

SR-2 algorithms.  

Therefore, it proved that basic DPSO needs 

more computational time to have competitive 

results than Chen, SR-1, and SR-2. For further 

research, or if we want to use DPSO for real 

problems, it needs more computational time to 

solve a problem using basic DPSO with parameter 

setting only. But, to solve a problem with efficient 

computational time, using DPSO with any 

hybridization or modification that matches the 

problem is better enough than using basic DPSO. 

Besides, depends on the post-hoc analysis, the 

SR2 algorithm has better performance than the 

Chen and SR1 algorithms. 
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