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The milling machine is a crucial aspect of the sugarcane agroindustry production
system; a disturbed milling machine will cause a decrease in production efficiency,
sap quality degradation, and excessive energy consumption. An early fault anomaly
detection system through machine learning is a solution to overcome the problems
in sugarcane milling machines. The purpose of this research is to propose a system
architecture design for early fault anomaly detection in sugarcane agroindustry
milling machines and to evaluate the performance of various machine learning
models on historical sensor data, identifying the most promising approach. This
study proposes a novel anomaly detection framework for sugarcane milling
machines to advance smart monitoring in agro-industrial systems. Using an
empirical dataset of 7,673 sensor instances (temperature, vibration, pressure, and
humidity), and applying several machine learning algorithms (logistic regression,
decision tree, and random forest), the framework integrates multi-sensor data to
improve fault prediction and reduce downtime. The results showed that the random
forest had the best accuracy, at 98.13%, followed by the decision tree, at 97.87%,
and logistic regression, at 89.70%. Feature contribution analysis reveals that the
vibration signal is the most dominant contributing factor among other features. The
results show that machine learning is a potential approach for predicting faults in
sugarcane milling machines, which can help the sugarcane agriculture industry make
informed decisions in the event of disturbances in these machines.
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1. INTRODUCTION

© 2025 Some rights reserved

According to Babu et al. [3], sugarcane contributes to

Sugar is one of the compounds that has become a
necessity for every human being. In its implementation,
sugar is often used as a nutritional enhancer or as an
additive to a food product [1]. In the process, sugar can
be obtained from various plants that have a high
carbohydrate content, especially those rich in sucrose.
Some of the plants that can be used include juice, sugar
palm, sugar beet, sago, coconut, and sugar cane [2].
Referring to the various sources of sugar raw materials,
sugarcane is the most widely used crop in the process.

70% of the total sugar production worldwide, so it plays
a very important role. Sugar produced from sugar cane
plants, obtained through a series of processes, is
considered to have quality and resources that are more
abundant than those of other plants. Even in 2029, it is
predicted to increase by 96% [4]. According to data
from the United States Department of Agriculture,
Brazil accounts for a 24% share of the global market,
followed by India with 15%, the European Union with
9%, and China with 6% [5]. Apart from being used as
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a source of sugar, sugarcane also has potential for
various other products, such as biomass, activated
carbon, and particleboard [6]. This indicates that the
sugarcane agroindustry has an increasing demand over
time, necessitating more attention to operations.

Disrupted sugarcane agroindustry operations will
certainly have an adverse impact on fulfilling sugar
demand; one of the machines that has become a critical
point is the sugarcane milling machine. According to
Qiu et al. [7], the milling process is a crucial stage in
obtaining juice from sugarcane. If the milling process
can be optimized, it will lead to an efficient extraction
process. Li et al. [8] stated that if the milling parameters
can be optimized, it will provide good juice quality,
optimal yield, and minimize energy costs. A disrupted
sugarcane milling machine will halt the process or
experience a slowdown, reducing the amount of
sugarcane milled, and consequently, the sugar
production target will not be achieved. Additionally, a
malfunctioning milling machine can lead to a decrease
in the quality of the juice. Sugarcane that is too late to
undergo milling treatment will experience quality
degradation in the form of a decrease in sugar content
due to natural fermentation [9]. Delays in the milling
handling process can also increase sugarcane impurities
in the refining process, affecting the final product [10].
Negative impacts also arise in terms of the energy
required, as the machine will work heavier than normal,
resulting in greater energy production. There needs to
be an early detection system for anomaly data through
specific parameters on sugar cane milling machines, so
that it can help the sugar agroindustry make informed
decisions. Early detection of anomalies involves
differentiating between abnormal patterns and normal
patterns in data [11].

Several previous studies have been conducted to
optimize the sugarcane milling process, aiming to
achieve high-quality, high-yield, and low-energy juice.
Meng et al. [12] used a kernel extreme learning
machine to predict juice gravity purity and juice color
value according to the criteria. Duan et al. designed a
two-step method to determine the factors that have a
significant influence on the milling process in
sugarcane [13]. Nayak et al. [14] employed a machine
fault simulator approach for rolling elements, including
bearings, gears, belts, pulleys, and motor bearings, to
enable the research to produce vibration pattern
learning from the most common machine faults in a
controlled manner without compromising production
quality/profit.

However, there are still no reports on early fault
anomaly detection systems in sugarcane milling
machines. Based on this, an early fault anomaly
detection system for sugarcane milling machines has
been designed using important parameters such as
temperature, pressure, vibration, and humidity, all of
which are monitored through sensors. The data
collected will be processed using machine learning

with a supervised learning type, consisting of several

variations of models, including logistic regression,

decision trees, and random forests.

Logistic regression was chosen as one of the
methodological approaches because it is simple and
easy to use, especially for binary classification [15].
Logistic regression has efficient computation and can
handle large datasets [16]. Moharam et al. [17]
conducted research using several machine learning
approaches, one of which was logistic regression for
detecting anomalies in radio connection environments
and obtained good accuracy results of 0.93.

Decision trees were also chosen as the approach
used in this study because they provide a hierarchical
decision tree approach to separate data based on feature
values [18]. The ease of interpretation and robust
performance are the advantages of decision trees, as the
classification results are based on feature values and
can control nonlinear relationships between the
variables involved [19]. The use of decision trees in
anomaly detection has been applied to other objects,
such as spur gears and predicting machine downtime
[20], [21].

The last model used was random forest, which is
an ensemble approach that combines several decision
trees to improve prediction accuracy. This enables
random forest to handle data noise and overfitting [22],
[23]. Kopp et al. [24] tested 34 anomaly datasets across
various cases, achieving an impressive accuracy range.
Additionally, Gao et al. [23] applied machine learning
approaches, including random forest, in the iron
industry for classifying damaged iron products.

The purpose of this research is to design an early
fault anomaly detection system on sugarcane
agroindustry milling machines and to find out the best
machine learning approach for fault anomaly detection
on sugarcane agroindustry milling machines. The main
contributions of this research are described as follows:
1) This research introduces a novel anomaly detection

framework for sugarcane milling machines,
enhancing the current state of smart monitoring
systems in the agro-industrial sector.

2) Offers a structured and detailed analysis of system
requirements for anomaly detection in sugarcane
agro-industrial machinery, thereby contributing
methodologically to the software and systems
engineering in agroindustry.

3) Through empirical experimentation, this study
provides a comprehensive comparative assessment
of machine learning approaches, thereby enriching
the understanding of algorithmic suitability and
performance in agro-industrial anomaly detection
scenarios.

4) The proposed system architecture and findings
serve as a strategic reference model for stakeholders
in the sugarcane agroindustry to implement data-
driven modernization and predictive maintenance
practices, supporting the broader movement toward
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Industry 4.0 in agricultural processing sectors.

This paper is organized in a coherent manner,
where Section 2 will review similar previous studies
related to anomaly detection in industrial processes. In
Section 3, the proposed methodology is discussed,
starting from requirement engineering, anomaly
detection testing procedures, and anomaly detection
evaluation. In Section 4, a discussion of the findings
and their synthesis with previous research and theory is
presented. In section 5, the conclusion of this research
is presented in line with the research objectives.

2. RELATED WORK

Research related to anomaly detection in industrial
machinery has been conducted extensively and offers
various benefits. Anomaly detection research is
considered capable of helping an industry recognize
abnormal patterns in a working machine, enabling it to
make informed decisions quickly and reduce
downtime, thereby maximizing production. In anomaly
detection, the indicators used are also an important
consideration, as they must accurately represent the
machine being detected.

Some previous research has been applied to
various cases and industries using different approaches.
There is still no anomaly detection in agricultural
industrial machinery, specifically in the sugar cane
agroindustry, so this research offers a novelty. Table 1
compares previous research in terms of industry,
prediction approach used, and variables employed.

The majority of prior studies on anomaly detection
have been conducted in manufacturing contexts, such
as steel production, rotating machinery, bearings,
gearboxes, and additive manufacturing. The majority of
these studies focus on vibration, acoustic, or image-
based signals, and while they achieve high accuracy
with advanced models, their application remains
concentrated on conventional industrial machines.
Notably, none of the reviewed works address anomaly
detection in the agro-industrial sector, particularly
sugarcane milling machines, which present unique
challenges due to their continuous operation, exposure
to environmental variability, and complex multi-sensor
dynamics. Moreover, prior studies often rely on
laboratory or benchmark datasets rather than real-world
industrial logs, limiting their practical applicability. To
bridge this gap, our study introduces an anomaly
detection framework specifically tailored for sugarcane
milling machines, leveraging sensor data and
grounding the labeling process in industry maintenance
logs.

3. RESEARCH METHODS

This research will utilize three machine learning
models with supervised learning types, namely logistic
regression, decision trees, and random forests. In terms
of how it works, logistic regression is a statistical

technique used for binary classification problems,
where the outcome variable is categorical (yes/no, 0/1).
This model predicts the probability of an event
occurring based on one or more predictor variables. The
output is restricted to values between 0 and 1,
representing probabilities. The logistic regression
model employs the maximum likelihood method for
parameter estimation, which involves an iterative
process to determine the most suitable model [25], [26].

Meanwhile, a decision tree is a hierarchical model
consisting of nodes that represent decisions or attribute
tests, branches that represent the results of those tests,
and leaf nodes that represent the final decision or
classification. These trees are constructed using
algorithms such as ID3, C4.5, and CART, which select
the best attributes to split the data at each node based
on criteria such as information gain or Gini impurity
[27], [28]. On the other hand, random forest is an
ensemble learning system that builds multiple decision
trees and combines their predictions to improve
accuracy and control overfitting. Each tree in the forest
is trained on a random subset of the data and a random
subset of the features, which introduces diversity
among the trees. The final prediction is made by
averaging the predictions using majority voting for
classification [29], [30].

The three models used will be trained and tested
using a dataset of 7,673 data consisting of temperature,
pressure, humidity, and vibration measurements, with
the data labeling process conducted based on the
maintenance logs provided by the sugar agro-industrial.
Anomalies in sugar cane milling machines that will be
detected include various suspected damages, such as
electrical damage and thermal damage. The sensors
used are considered capable of representing the
machine's behavior completely.

The dataset is obtained from sensors installed on a
sugar cane milling machine with 5 rollers and a 7,000
ton per day (TCD) capacity. A total of 70% of the
collected data will be used for training, and 30% will
be used for testing, according to the three models
employed: logistic regression, decision tree, and
random forest. The data that has been tested will then
be evaluated using several measurement metrics,
especially from the accuracy and goodness model. In
real-world implementation, the system is real-time
because it functions in early detection and is
implemented on a real scale.

3.1. Vibration parameter

The vibration aspect in an industry is one of the
important indicators in predictive maintenance
practices. In this study, the sensor used was a YDS106
type. Vibration monitoring has proven to be an
effective method for finding damage to machine com-
ponents [31], [32], [33]. In the diagnosis of machine
operation using vibration parameters, 1SO 22096:2007
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Table 1. Comparison with previous research

No  Authors Scope Contribution Performance Variable
1. Alcazaret Construction The research contributes to providing SVM (92.3%), Temperature,
al. [34] tools a framework for security solutions in  RF  (91.5%), flow, speed,
industry industrial using supervised learning CNN (94.2%) pressure.
for real time anomaly detection in the
construction industry.
2. Gamalet  Steel plate The research contributes in providing DT  (91.1%), Pixel areas,
al. [35] product an anomaly detection solution by KNN (82.9%), perimeter, log
industry supervised learning in steel plates. RF  (92.9%), areas, length of
SVM  (86%), conveyor, type
LR  (88.3%), steel, thickness,
MLP (73.9%) luminosity.
3. Huanget Rotating The findings reveal intelligent fusion BNN (91.6%), Accelerometers
al. [36] machinery that combine the favorable characters ENN (27.2%),
chemical of different to drive the development RBFN (83.6%),
industry of fault diagnosis prediction PNN  (66%),
WNN (84.8%)
4. Das& Rotating This  paper introduces genetic GADA (99.8%) Tachometer,
Das [37] machinery algorithm to optimized boosted trees sounds, and
for fault identification in rotating accelerometers
machinery.
5. Wang et Bearing This paper proposes a novel hybrid WPDRF Vibration
al. [38] machinery approach of a wavelet packet and (88.2%)
chemical random forests classifier for the fault
industry diagnosis in rolling bearings.
6. Lietal Gearbox This work addresses the use of a deep DRF (97.7%) Acoustic &
[39] industry random forest fusion to fault diagnosis vibration
for gearboxes by using acoustic and
accelerometer.
7. Chow et Concrete This implementing deep learning for DNN (65.87%)  Fusion
al. [40] material anomaly detection of defects on
industry concrete structures.
8. Scime & Laser This paper proposes autonomous CNN (85%) Fusion
Beuth [41] machinery detection of many anomalies of
defects in laser powder bed fusion
9. Cooper et Milling This paper demonstrates the detection GAN (90.56%)  Acoustic
al. [42] machinery of anomalies in the time-frequency
metal domain of the tool's acoustic spectrum
during cutting operations.
10. Mattera & Wire arc This paper compares unsupervised, LR (95.3%), RF Voltage signals
Nele [43]  additive supervised, and semi-supervised (95.7%), DT
approaches with small datasets in wire  (93.7%), CNN
arc additive manufacturing. (96.8%)
11  Proposed  Milling This study develops and validates a LR (89.70%), Vibration,
Research ~ machinery machine-learning-based anomaly DT (97.87%), temperature,
sugarcane detection framework for sugarcane RF (98.13%) humidity,
agroindustry  milling machines, integrating pressure
requirement analysis, model

comparison, and system architecture.

Note: SVM = support vector machine, RF = random forest, CNN = convolutional neural networks, DT = decision tree, KNN = k-nearest
neighbor, NB = naive bayes, LR =logistic regression, MLP =multi-layer perception, BNN = backpropagation neural network, ENN = elman
neural network, RBFN = radial basis function neural network, PNN = probabilistic neural network, WNN = wavelet neural network, GAADA
= genetic algorithm and adaboost, WPDRF = wavelet packet denoising random forest, DRF = deep random forest, DNN = deep neural network,
GAN = generative advers network
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is the reference. Vibration is the oscillatory motion of
equipment around its equilibrium position. In the
context of vibration, any change in the amplitude or
frequency of the signal indicates that the machine
performance is impaired [44], [45]. Vibration analysis
can be an effective tool for diagnosing looseness,
eccentricity, imbalance, blade defects, misalignment,
defective bearings, damaged gears, and cracked or bent
shafts [46], [47]. In practice, predictive maintenance
has various advantages compared to other parameters,
including high accuracy, sensitivity to various types of
defects, and being a non-invasive or non-destructive
method [48], [49].

3.2. Temperature parameter

Temperature is one of the important parameters in
predictive maintenance prediction and is usually
described through fluctuations in the running machine.
In this study, the sensor used is a heat-resistant RTD
PT100. Temperature can provide an overview of
potential problems that occur in a machine through
several assumptions, such as overheating or
inefficiency [50]. In a milling machine, temperature can
describe the performance of the machine, whether it is
in accordance with its capacity and whether it is
receiving a sufficient electricity supply. Stable
temperature, in accordance with the criteria, is closely
related to the performance of an industrial machine.
Monitoring temperature fluctuations is crucial to ensure
operational efficiency, safety, and equipment longevity
[51]. Temperature anomalies, if not detected, can cause
equipment damage, production disruptions, and safety
hazards [52].

3.3. Pressure parameter

The pressure on the milling machine is used for
measurement in relation to the pump on the milling
machine after the Nira is squeezed. In this study, the
sensor used is a P20T. The juice that has been produced
will be pumped to the next machine for further
processing. Pump pressure that does not meet the
criteria will reduce the yield channeled to the next
process [53]. This affects the sugar yield in the final
product. A too-high-pressure sensor is indicative of an
overload phenomenon, while a low-pressure sensor is
indicative of a leak in the component [54], [55].
Pressure sensors also do not directly cause total damage
to the milling machine; however, they can serve as an
early indicator or early detection of major damage [56].

3.4. Humidity parameter

Excessive humidity in the sugarcane milling
machine environment can be a significant factor
contributing to various forms of systemic damage. In
this study, the sensor used is an SHT85. High humidity
accelerates the oxidation process of metals, triggering
corrosion in vital components such as bearings, shafts,

gears, and electrical connectors. This ultimately
reduces efficiency, accelerates mechanical wear, and
increases the risk of total machine failure [57]. In
addition, modern sugarcane milling machines equipped
with electronic systems and digital sensors are highly
susceptible to condensation due to high humidity,
which can cause short circuits, insulation disorders, and
even total sensor failure [58]. Excess humidity also
encourages the growth of microorganisms that
contaminate processed products, thereby reducing
product quality. Therefore, humidity sensors play a
crucial role as anomaly indicators in predictive
maintenance systems. Changes in humidity trends from
historical values can indicate damage such as cooling
system leaks, damaged seals, or abnormal changes in
the operating environment [59].

3.5. Evaluation of prediction performance

To measure prediction performance, several
evaluation metrics will be used, including the confusion
matrix, the area under the curve-receiving operating
characteristic (AUC-ROC), and the mean squared error
(MSE). In the confusion matrix evaluation,
performance will be measured using accuracy,
precision, sensitivity, and F1-score. The accuracy,
precision, sensitivity, and F1-score values are obtained
from a 2 x 2 table that compares correct answers and
incorrect answers. In the confusion matrix, there are
true positive, true negative, false positive, and false
negative. True positive and true negative are
measurement results that indicate a direct correlation
between the actual value and the predicted value, while
false positive and false negative are measurement
results that show a non-linear relationship between the
actual value and the predicted value.

Evaluating prediction performance, there are also
AUC-ROC and MSE, which are used to determine the
goodness of the model in predicting classification. In
measuring AUC-ROC, there is a standard: if the value
is close to 1, then the model can be said to be improving
[54]. Conversely, in MSE, the smaller the number
produced, the better [60]. The details of the
measurement formulas, including accuracy, precision,

sensitivity, F1-score, AUC-ROC, and MSE, are

presented as follows:

2 TP +TN L
Ay = TP Y FP+ FN + TN M

Precisi e 2
recision = TP (2)

TP+TN
Sensitivity = 3)

TP+FP+FN+TN
2(sensitivity x precision)
F1score = —— — 4
(sensitivity + precision)
n

1
Mean Squared Error = n 2()&' - 9)? (5)

i=1

d ' http://dx.doi.org/10.30656/jsmi.v9i2.10530

139


http://dx.doi.org/10.30656/jsmi.v9i2.10530

Jurnal Sistem dan Manajemen Industri Vol 9 No 2 December, 2025, 135-149

1
AUC — ROC = f TPR(FPR™1(t))dt (6)

The prediction performance evaluation system is a
crucial component in assessing the accuracy of a model,
particularly in classification tasks. Several commonly
used evaluation metrics include accuracy, precision,
and sensitivity. In this context, several standard
notations are applied: TP (true positive) refers to the
number of positive cases correctly classified by the
model; FP (false positive) refers to negative cases
incorrectly classified as positive; TN (true negative)
represents the number of negative cases correctly
identified; and FN (false negative) refers to positive
cases that are incorrectly classified as negative.
Meanwhile, the mean squared error (MSE) formula
involves the notation n, which indicates the total
number of observations in the dataset. The notation y;
represents the actual value of the i-th observation, while
7; denotes the predicted value for that same observation.
For more advanced classification model evaluation,
such as the area under the curve - receiver operating
characteristic (AUC-ROC), the notations TPR (true
positive rate), equivalent to sensitivity, and FPR (false
positive rate), which refers to the proportion of actual
negative cases incorrectly classified as positive, are
used. Lastly, dt denotes the differentiation with respect
to variable t, commonly used in integral calculations
within ROC curve analysis.

3.6. Research stages

The research began with the collection of
temperature, pressure, vibration, and humidity data
obtained from sensors installed in sugarcane milling
machines to monitor the performance of the sugarcane
milling machine. The data collected from the sensors is
raw data that is then checked for missing values,
cleaned, and normalized.

The next step is to verify and clean the data to
eliminate empty values, ensuring it is ready for
analysis. At this stage, it involves checking the data for
validity. The handling of missing data was performed
using simple imputation, specifically filling in previous
values (forward fill). Normalization was then applied
using minimum-maximum normalization, ensuring all
values fell within the range of 0-1 for subsequent data
processing. Sensor observation data was collected 21
times a day over a period of 1 year, as the dataset used.

Data that is clean, normally distributed, free from
multicollinearity issues, and not affected by
autocorrelation phenomena will be processed further in
the analysis stage using three selected machine learning
models: logistic regression, decision trees, and random
forest. Each of these models was chosen because it
represents different approaches to classification,
ranging from statistical probability-based methods to
rule-based learning and ensemble techniques. After the
models are trained and tested, the results of the analysis
will be carefully compared using several evaluation

metrics, particularly the confusion matrix and
additional statistical measures, to ensure the reliability
and validity of the findings. Once the comparative
evaluation is complete, the results will undergo a
deeper investigation through feature importance
analysis, which aims to identify the most significant
variables that influence the objectives of the study. This
step provides practical insights for interpretation and
decision-making. The complete stages of this research
process are systematically illustrated in Fig. 1.

Problem identification
1. The sugar agroindustry has a crucial role in meeting sugar demand
2. Sugarcane agroindustry operations are disrupted due to milling machine disruptions
3. Drastically increased machine energy consumption, decreased production efficiency,
process stoppages, and degradation of end product quality.
17
‘ Problem formulation and research objectives ‘
¥
‘ Data collection on engine sensors ‘

Missing values, normalization, multicolliniearity,
and autocorrelation
1
A4 A 4

‘ Data processing and modeling ‘ ‘ System architecture design ‘

I ]
v

‘ Machine learning data processing ‘
¥ v ¥
‘ Logistic regression ‘ ‘ Decision tree ‘ ‘ Random forest ‘

[ | |
7

‘ Feature importance analysis ‘

¥

Fault anomaly early detection system in sugar agroindustry
milling machine through machine learning approach.

Fig 1. Research stages of sugarcane milling machine
anomaly prediction through machine learning

4. RESULTS AND DISCUSSION
4.1. Early fault detection system development

The development of a system is fundamentally
determined by the specific requirements of the industry
in which it will be applied. In this research, the
requirements are categorized into three primary
aspects: technical, functional, and non-functional.
These aspects are further visualized through block
diagrams that illustrate abstract components and their
interrelationships. The diagrams highlight essential
system elements, including sensors, data processing
units, feedback mechanisms, and system control.
Focusing on the sugarcane milling machine as the
primary object of study, this research emphasizes the
need for accurate, real-time monitoring of critical
subsystems. To achieve this, a set of sensors
(temperature, humidity, vibration, and pressure) is
deployed to collect relevant operational data from
different stages of the milling process.

The sensor data is first transmitted to a centralized
database to ensure secure and structured storage. Once
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stored, the data is processed through a data control
system where advanced analysis techniques are
employed to detect anomalies and predict potential
faults. These insights are expected to help decision-
makers maintain efficiency, minimize downtime, and
prevent costly machine failures. In doing so, the system
serves as an intelligent support tool for operational
management in the agroindustry. A detailed overview
of the system requirements designed for anomaly
detection in the sugarcane milling process is provided
in Table 2.

Table 2. System requirement

Requirements  Detail
Technical 1. Temperature, vibration,
pressure, and humidity

sensor (data act system)

2. Technician, connector data,
and operator (data
processing & control)

3. Data visualization and

reporting system

The system can collect data

through the sensors used in

real time

2. The system can analyze
anomaly  detection data
using machine learning

3. The system can provide
warning notifications to
stakeholders in real time

4. The system can display data

in an interactive dashboard

of machine monitoring

The system is responsive

and has fast latency

2. The system has
accuracy in detection

3. The system must be scalable

Functional 1.

Non-functional 1.

high

or adaptive

4. The system has data
encryption  to protect
information.

5. The system has a user
interface friendliness and
fully documented.

The block diagram of the fault anomaly detection
system in the sugarcane agro-industrial milling
machine will be divided into three parts: data
acquisition, data processing, and action. All these parts
are interconnected and have their respective roles. Data
acquisition is tasked with collecting data through
sensors installed on the machine. Data processing and
control will store and process data to predict fault
anomalies, producing a report. Action is taken based on

the decision-making process,
prediction results obtained.

The proposed system approach is also expected to
be scalable, allowing it to be applied to other sugar cane
mills, as there are similarities in damage indicators
between one sugar cane mill and another. The details of
the fault anomaly detection object abstraction at milling
machine are presented in Fig. 2.

informed by the

4.2. Data processing and modelling

Data that has been collected and will be used in
machine learning modeling needs prerequisite testing
to validate the data used. The prerequisite tests used in
this case are multicollinearity testing and auto-
correlation  testing. Multicollinearity testing is
conducted to determine the correlation between
independent variables, as measured by the variance
inflation factor (VIF). Data is said to have high multi-
collinearity if it produces VIF> 10, said to be moderate
multicollinearity if VIF 5-10, and said to be low
multicollinearity if VIF<5 [61]. In addition to
multicollinearity, there is an autocorrelation test, which
is a condition of checking the correlation between
members of a series of observations sorted by time or
space. In this study, the Durbin-Watson test will be
used, with an indicator close to 2. If the Durbin-Watson
(DW) value is closer to 2, it indicates the absence of
autocorrelation [62].

The results of multicollinearity testing found that
all data used in the test belonged to low
multicollinearity. In more detail, temperature gets a
VIF value of 1,006, pressure of 1,008, vibration of
1,010, and humidity of 1,000. Meanwhile, the
autocorrelation prerequisite test shows that there is no
autocorrelation because it gets a DW value of 1.969.
Based on the prerequisite testing obtained, it is known
that the data obtained is suitable for further use in
machine learning testing. The data will then be
prepared and divided for training and for testing,
roughly 70% of the data (5,371 data) and 30% of the
data (2,302 data).

4.3. Prediction through logistic regression, decision

tree, and random forest

To evaluate the feasibility of using machine
learning for anomaly detection within the proposed
system context, several models were trained and tested
using historical sensor data collected from the relevant
machines. Based on the analysis that has been done, it
is found that random forest has the best prediction
ability compared to other models, namely logistic
regression and decision tree. Random forest is a better
model because this model can handle overfitting
problems in the prediction process. Random forest can
bagging or bootstrap aggregating is an ensemble
learning technique that performs resampling in parallel
and combines the results to produce a final prediction.
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Random forest has the ability to obtain a globally
optimal solution, this makes random forest as an
ensemble model superior to a single model [63]. On the
other hand, random forests are also able to reduce bias
and variance, this is because there is a merging of
several trees so that it can produce low-bias and low-
variance prediction results. These results are in line
with research conducted by Gamal et al. [35], which
shows that random forest is also the best approach for
predicting damage to steel plates with an accuracy of
92.9%. Mattera & Nele [43] also showed similar
results, making the random forest approach the best
approach with an accuracy of 95.7% in predicting
safety in the manufacturing industry, capable of
detecting data manipulation, overload, and intrusion.
Furthermore, Li et al. [39] developed a model using
deep random forests to predict anomalies in gearboxes
and achieved an excellent accuracy of 97.7%. On the
other hand, Wang et al. [38] conducted development by
combining wavelet packet and random forests for
predicting anomalies in chemical industry gear
bearings with an accuracy of 88.2%.

Decision tree also has a performance that is not
much different from random forest, this is because the
decision tree has a similar working principle to random
forest. However, in creating a solution, the decision tree

only considers local solutions without considering
other branches of the tree. Research conducted by
Mattera & Nele [43] in predicting the security of
manufacturing industry data shows an accuracy that is
not significantly different from that of random forest,
which is 93.7%. Halabaku & Bytyci [64] stated that the
decision tree becomes a relatively sensitive model,
capturing noise as a meaningful pattern, thus reducing
the robustness of the decision tree model. Additionally,
the decision tree, as a single model, often experiences
overfitting in the prediction process. As a result, the
complete prediction and comparison results of the
anomaly fault detection system on the sugarcane
agroindustry milling machine are presented in Table 3
and Fig. 3. Logistic regression is a machine learning
model that has lower accuracy compared to decision
trees and random forests. Logistic regression is one of
the models that has limitations in capturing nonlinear
patterns between predictor variables (temperature,
humidity, vibration, and pressure sensor data) and the
log of the target variable (fault anomaly detection). This
finding aligns with Borucka & Grzelak [65], which
demonstrates that the use of logistic regression in
evaluating the efficiency of production machines yields
an accuracy of only 67.4% with an AUC value of
0.7156.

Table 3. Comparison of the performance of fault anomaly prediction systems in sugar agroindustry milling

machines
Machine MSE MSE  Accuracy Accuracy F1 AUC Precision  Recall
Learning Train Test Train Test Score Score Score Score
LR 0.098 0.102 90.13% 89.70% 84.84% 0.719 44.85%  50.00%
DT 0.016 0.021 98.34% 97.87% 97.79% 0.906 97.69%  90.60%
RF 0.000 0.0186 100% 98.13% 98.11% 0.973 95.98%  93.73%

Note: Machine learning approach (LR = Logistic Regression, DT = Decision Tree, RF = Random Forest)
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Fig 3. Confusion matrix (a) logistic regression, (b) decision tree, and (c) random forest

On the other hand, logistic regression is also
difficult to identify complex interactions that occur
between variables. The interaction between predictor
variables in this case is classified as a complex
interaction because it has four predictor variables. This
is further exacerbated by the sensitivity of logistic
regression to noise; the presence of noise in the dataset
will reduce the performance of logistic regression.
Research by Gamal et al. [35] shows that logistic
regression is not superior to random forest and decision
tree in predicting steel plate damage.

This research presents a new approach to digital
transformation, particularly in the early detection of
agroindustry machinery. Most early detection research
on machinery is conducted in another industry with
different conditions, such as domain-specific
applications, source data, evaluation setups, and high
complexity [66], [67], [68]. Research by Hu et al. [66]
was conducted to detect damage to bearing components
in the petrochemical industry using vibration signals as

a single predictor variable. The anomaly detection
system built has a relatively good accuracy of 95.58%.
Wen et al. conducted fault detection on screw pumps in
the petrochemical industry using several indicators as
predictor variables, such as voltage, power, load,
torque, rotational speed, and pressure. The results of the
study have a fairly high accuracy, ranging from 69.5%
to 75.6% [69].

In comparison with the manual inspection system
implemented by sugar factories, there are various
advantages, including the fact that the system is more
proactive than manual inspections, which are reactive
because decisions are only made after symptoms
appear. Machine learning and sensor-based inspection
systems are capable of providing real-time checks,
enabling regular monitoring of machine conditions and
eliminating human subjectivity, as they have learned
from machine behaviour. The machine learning and
sensor-based inspection system can provide an
overview of complex symptom relationships that
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cannot be captured through manual inspection due to
the interplay between multiple variables involved.
4.4. Feature importance

Feature importance is a crucial stage in identifying
the most important or contributing features to a
system's design. In this research, feature importance is
performed at the end to determine how the system
makes decisions, as well as to validate the results. The
results of feature importance are presented in Table 4.

Table 4. Features an important analysis

Feature LR DT RF
Vibration 2.170 0.505 0.330
Temperature  0.689 0.394 0.366
Pressure 0.594 0.074 0.185
Humidity 0.229 0.025 0.111

Note: Machine learning approach (LR = Logistic Regression, DT =
Decision Tree, RF = Random Forest)

The vibration feature is the most dominant aspect,
followed by temperature, pressure, and humidity.
Vibration is an aspect that is synonymous with
disruption in a machine; the higher the vibration value
produced, the higher the potential for the machine to
experience disruption. Vibration is also useful,
especially in the early detection of machine failure.
This is because vibration signals can provide signs
before other symptoms appear, such as changes in
temperature, pressure, humidity, and sound. Even
specific vibration signals can provide diagnostic
capabilities regarding the type of damage experienced
by the machine [70].

Previous research from Tambake et al. [71]
performed diagnosis on CNC machines using vibration
features of three axes as predictor variables and
obtained perfect prediction results. Yuan et al. [72] also
utilised vibration signals from rotors, gearboxes, and
rolling bearings to detect rotating machine failures,
achieving results with good accuracy. This demon-
strates that vibration signals are a crucial indicator in
failure detection.

4.5. Proposed corrective actions

The proposed system emphasizes concrete
corrective actions to mitigate failures once they are
detected. This is essential because anomaly prediction
alone, without actionable responses, would limit the
system’s utility for industrial operations. Each anomaly
indicator corresponds to a specific operational issue
and requires targeted intervention. For instance,
abnormal vibration patterns may signal bearing wear,
roller imbalance, or shaft misalignment; in such cases,
corrective measures such as bearing replacement, rotor
rebalancing, and alignment adjustments should be
carried out immediately. Elevated temperature readings
can indicate lubrication failure, inefficient cooling, or
electrical overload, requiring operators to inspect the
lubrication system, verify cooling mechanisms, and

evaluate motor performance. Likewise, abnormal
pressure values may suggest leakage, pump overload,
or seal degradation, which can be remedied through
pump inspection, seal replacement, and pipeline
maintenance. High humidity levels, often associated
with corrosion and sensor malfunction, can be
mitigated by ensuring adequate ventilation, repairing
faulty seals, and implementing dehumidification
procedures [73]. These corrective actions directly
connect to the anomaly detection outputs, ensuring that
the insights generated by the model lead to tangible
operational improvements.

To ensure practical implementation, the anomaly
detection system should be integrated with a real-time
alert mechanism that categorizes deviations into early
warnings and critical alerts. This aligns with the
predictive framework previously described, where
models such as random forest not only achieve high
classification accuracy but also provide probability-
based outputs that can be mapped to risk thresholds.
Early warnings enable operators to schedule main-
tenance interventions without disrupting production,
while critical alerts trigger immediate inspections and
corrective actions to prevent system breakdowns [74].
In this way, the detection system evolves from a passive
classification tool into a proactive decision-support
mechanism. Furthermore, by structuring corrective
actions into condition-based maintenance (CBM)
strategies, the system enables a shift from traditional
scheduled maintenance toward predictive and adaptive
maintenance routines. This integration bridges the gap
between predictive analytics and operational practice,

ensuring that anomaly detection translates into
operational resilience.
By linking anomaly detection results with

actionable protocols, the proposed framework ensures
that failures are not only identified but also
systematically addressed in alignment with the
predictive system architecture described earlier. The
corrective actions serve as the execution layer of the
anomaly detection pipeline, reinforcing the value of
predictive insights by preventing unplanned downtime,
extending equipment life, and improving product
quality. Moreover, documenting each corrective
intervention in maintenance logs creates a feedback
loop that strengthens the anomaly detection models
[75]. Historical corrective action data can be
reintegrated into the training process, refining model
accuracy, improving feature importance interpretation,
and supporting more efficient resource allocation. This
closed-loop system positions the proposed framework
as not only a predictive tool but also as a continuous
improvement mechanism for smart agro-industrial
operations.

4.6. Research implications
This study has considerable implications for the

cane sugar agroindustry, producing operational
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multiplier effects that extend beyond mere
enhancements in monitoring. The system emphasises
the strategic importance of leveraging historical and
real-time data assets, a benefit that becomes
increasingly pronounced for mills that already utilise
digital record-keeping systems. The integration of these
datasets enables advanced capabilities, including
machine life prediction, workflow diagnostics, and
enhanced process optimization. Its high-accuracy
anomaly detection module serves as a practical
decision-support tool that expedites maintenance
responses, reduces diagnostic uncertainty, and shortens
the duration of repair interventions [76].

The earlier and more reliable identification of
faults enables mills to transition from rigidly scheduled
maintenance to condition-based maintenance, thereby
directly reducing downtime, minimizing operational
waste, and stabilizing throughput, while enhancing
juice extraction efficiency and quality. Beyond these
operational improvements, the Al-based framework
provides a tangible modernization pathway for an
industry that has remained technologically stagnant for
centuries. It strengthens mill competitiveness,
facilitates scalable digital transformation, and offers a
replicable model for data-driven innovation across
agro-industrial processing sectors [77].

5. CONCLUSION

This research develops a damage anomaly
detection system for sugarcane milling machines to
enhance production efficiency, particularly during the
sap extraction process, while also preventing
production stoppages, preserving product quality, and
reducing energy consumption. By rigorously
evaluating several machine learning models using
historical sensor data, the random forest model
emerged as the most accurate, achieving 98.13%
accuracy with an average deviation of 1.86%. The
decision tree achieved an accuracy of 97.87%, whereas
logistic regression showed the lowest performance at
89.70%, primarily due to its limitations in modeling
non-linear relationships and variable interactions. This
study addresses a significant research gap in the
sugarcane agroindustry, as integrated machine
learning-based anomaly detection systems have not yet
been widely adopted. The research contributes to the
field by both assessing the effectiveness of predictive
models and proposing a system architecture suitable for
implementation in sugar mill operations. The
application of historical sensor data for fault detection
represents a relatively novel approach in this industrial
context. The findings align with the study’s objectives
by demonstrating high prediction accuracy and

Nevertheless, the approach has limitations,
including testing conducted within a single mill
environment, which affects the model’s
generalizability. The system has not yet been validated
in real-time conditions, and its economic viability has
not been analyzed. Future work will focus on
integrating real-time monitoring with the Internet of
Things, exploring advanced deep learning models such
as long short-term memory and autoencoders,
incorporating explainable artificial intelligence to
support technician decision-making, and evaluating the
system’s economic and environmental impacts.
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