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The milling machine is a crucial aspect of the sugarcane agroindustry production 

system; a disturbed milling machine will cause a decrease in production efficiency, 

sap quality degradation, and excessive energy consumption. An early fault anomaly 

detection system through machine learning is a solution to overcome the problems 

in sugarcane milling machines. The purpose of this research is to propose a system 

architecture design for early fault anomaly detection in sugarcane agroindustry 

milling machines and to evaluate the performance of various machine learning 

models on historical sensor data, identifying the most promising approach. This 

study proposes a novel anomaly detection framework for sugarcane milling 

machines to advance smart monitoring in agro-industrial systems. Using an 

empirical dataset of 7,673 sensor instances (temperature, vibration, pressure, and 

humidity), and applying several machine learning algorithms (logistic regression, 

decision tree, and random forest), the framework integrates multi-sensor data to 

improve fault prediction and reduce downtime. The results showed that the random 

forest had the best accuracy, at 98.13%, followed by the decision tree, at 97.87%, 

and logistic regression, at 89.70%. Feature contribution analysis reveals that the 

vibration signal is the most dominant contributing factor among other features. The 

results show that machine learning is a potential approach for predicting faults in 

sugarcane milling machines, which can help the sugarcane agriculture industry make 

informed decisions in the event of disturbances in these machines. 
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1. INTRODUCTION 

Sugar is one of the compounds that has become a 

necessity for every human being. In its implementation, 

sugar is often used as a nutritional enhancer or as an 

additive to a food product [1]. In the process, sugar can 

be obtained from various plants that have a high 

carbohydrate content, especially those rich in sucrose. 

Some of the plants that can be used include juice, sugar 

palm, sugar beet, sago, coconut, and sugar cane [2]. 

Referring to the various sources of sugar raw materials, 

sugarcane is the most widely used crop in the process. 

According to Babu et al. [3], sugarcane contributes to 

70% of the total sugar production worldwide, so it plays 

a very important role. Sugar produced from sugar cane 

plants, obtained through a series of processes, is 

considered to have quality and resources that are more 

abundant than those of other plants. Even in 2029, it is 

predicted to increase by 96% [4]. According to data 

from the United States Department of Agriculture, 

Brazil accounts for a 24% share of the global market, 

followed by India with 15%, the European Union with 

9%, and China with 6% [5]. Apart from being used as 
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a source of sugar, sugarcane also has potential for 

various other products, such as biomass, activated 

carbon, and particleboard [6]. This indicates that the 

sugarcane agroindustry has an increasing demand over 

time, necessitating more attention to operations. 

Disrupted sugarcane agroindustry operations will 

certainly have an adverse impact on fulfilling sugar 

demand; one of the machines that has become a critical 

point is the sugarcane milling machine. According to 

Qiu et al. [7], the milling process is a crucial stage in 

obtaining juice from sugarcane. If the milling process 

can be optimized, it will lead to an efficient extraction 

process. Li et al. [8] stated that if the milling parameters 

can be optimized, it will provide good juice quality, 

optimal yield, and minimize energy costs. A disrupted 

sugarcane milling machine will halt the process or 

experience a slowdown, reducing the amount of 

sugarcane milled, and consequently, the sugar 

production target will not be achieved. Additionally, a 

malfunctioning milling machine can lead to a decrease 

in the quality of the juice. Sugarcane that is too late to 

undergo milling treatment will experience quality 

degradation in the form of a decrease in sugar content 

due to natural fermentation [9]. Delays in the milling 

handling process can also increase sugarcane impurities 

in the refining process, affecting the final product [10]. 

Negative impacts also arise in terms of the energy 

required, as the machine will work heavier than normal, 

resulting in greater energy production. There needs to 

be an early detection system for anomaly data through 

specific parameters on sugar cane milling machines, so 

that it can help the sugar agroindustry make informed 

decisions. Early detection of anomalies involves 

differentiating between abnormal patterns and normal 

patterns in data [11]. 

Several previous studies have been conducted to 

optimize the sugarcane milling process, aiming to 

achieve high-quality, high-yield, and low-energy juice. 

Meng et al. [12] used a kernel extreme learning 

machine to predict juice gravity purity and juice color 

value according to the criteria. Duan et al. designed a 

two-step method to determine the factors that have a 

significant influence on the milling process in 

sugarcane [13]. Nayak et al. [14] employed a machine 

fault simulator approach for rolling elements, including 

bearings, gears, belts, pulleys, and motor bearings, to 

enable the research to produce vibration pattern 

learning from the most common machine faults in a 

controlled manner without compromising production 

quality/profit. 

However, there are still no reports on early fault 

anomaly detection systems in sugarcane milling 

machines. Based on this, an early fault anomaly 

detection system for sugarcane milling machines has 

been designed using important parameters such as 

temperature, pressure, vibration, and humidity, all of 

which are monitored through sensors. The data 

collected will be processed using machine learning 

with a supervised learning type, consisting of several 

variations of models, including logistic regression, 

decision trees, and random forests.  

Logistic regression was chosen as one of the 

methodological approaches because it is simple and 

easy to use, especially for binary classification [15]. 

Logistic regression has efficient computation and can 

handle large datasets [16]. Moharam et al. [17] 

conducted research using several machine learning 

approaches, one of which was logistic regression for 

detecting anomalies in radio connection environments 

and obtained good accuracy results of 0.93. 

Decision trees were also chosen as the approach 

used in this study because they provide a hierarchical 

decision tree approach to separate data based on feature 

values [18]. The ease of interpretation and robust 

performance are the advantages of decision trees, as the 

classification results are based on feature values and 

can control nonlinear relationships between the 

variables involved [19]. The use of decision trees in 

anomaly detection has been applied to other objects, 

such as spur gears and predicting machine downtime 

[20], [21].  

The last model used was random forest, which is 

an ensemble approach that combines several decision 

trees to improve prediction accuracy. This enables 

random forest to handle data noise and overfitting [22], 

[23]. Kopp et al. [24] tested 34 anomaly datasets across 

various cases, achieving an impressive accuracy range. 

Additionally, Gao et al. [23] applied machine learning 

approaches, including random forest, in the iron 

industry for classifying damaged iron products. 

The purpose of this research is to design an early 

fault anomaly detection system on sugarcane 

agroindustry milling machines and to find out the best 

machine learning approach for fault anomaly detection 

on sugarcane agroindustry milling machines. The main 

contributions of this research are described as follows: 

1) This research introduces a novel anomaly detection 

framework for sugarcane milling machines, 

enhancing the current state of smart monitoring 

systems in the agro-industrial sector. 

2) Offers a structured and detailed analysis of system 

requirements for anomaly detection in sugarcane 

agro-industrial machinery, thereby contributing 

methodologically to the software and systems 

engineering in agroindustry. 

3) Through empirical experimentation, this study 

provides a comprehensive comparative assessment 

of machine learning approaches, thereby enriching 

the understanding of algorithmic suitability and 

performance in agro-industrial anomaly detection 

scenarios. 

4) The proposed system architecture and findings 

serve as a strategic reference model for stakeholders 

in the sugarcane agroindustry to implement data-

driven modernization and predictive maintenance 

practices, supporting the broader movement toward 
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Industry 4.0 in agricultural processing sectors. 

This paper is organized in a coherent manner, 

where Section 2 will review similar previous studies 

related to anomaly detection in industrial processes. In 

Section 3, the proposed methodology is discussed, 

starting from requirement engineering, anomaly 

detection testing procedures, and anomaly detection 

evaluation. In Section 4, a discussion of the findings 

and their synthesis with previous research and theory is 

presented. In section 5, the conclusion of this research 

is presented in line with the research objectives. 

 

2. RELATED WORK  

Research related to anomaly detection in industrial 

machinery has been conducted extensively and offers 

various benefits. Anomaly detection research is 

considered capable of helping an industry recognize 

abnormal patterns in a working machine, enabling it to 

make informed decisions quickly and reduce 

downtime, thereby maximizing production. In anomaly 

detection, the indicators used are also an important 

consideration, as they must accurately represent the 

machine being detected. 

Some previous research has been applied to 

various cases and industries using different approaches. 

There is still no anomaly detection in agricultural 

industrial machinery, specifically in the sugar cane 

agroindustry, so this research offers a novelty. Table 1 

compares previous research in terms of industry, 

prediction approach used, and variables employed. 

The majority of prior studies on anomaly detection 

have been conducted in manufacturing contexts, such 

as steel production, rotating machinery, bearings, 

gearboxes, and additive manufacturing. The majority of 

these studies focus on vibration, acoustic, or image-

based signals, and while they achieve high accuracy 

with advanced models, their application remains 

concentrated on conventional industrial machines. 

Notably, none of the reviewed works address anomaly 

detection in the agro-industrial sector, particularly 

sugarcane milling machines, which present unique 

challenges due to their continuous operation, exposure 

to environmental variability, and complex multi-sensor 

dynamics. Moreover, prior studies often rely on 

laboratory or benchmark datasets rather than real-world 

industrial logs, limiting their practical applicability. To 

bridge this gap, our study introduces an anomaly 

detection framework specifically tailored for sugarcane 

milling machines, leveraging sensor data and 

grounding the labeling process in industry maintenance 

logs.  

 

3. RESEARCH METHODS  

This research will utilize three machine learning 

models with supervised learning types, namely logistic 

regression, decision trees, and random forests. In terms 

of how it works, logistic regression is a statistical 

technique used for binary classification problems, 

where the outcome variable is categorical (yes/no, 0/1). 

This model predicts the probability of an event 

occurring based on one or more predictor variables. The 

output is restricted to values between 0 and 1, 

representing probabilities. The logistic regression 

model employs the maximum likelihood method for 

parameter estimation, which involves an iterative 

process to determine the most suitable model [25], [26]. 

Meanwhile, a decision tree is a hierarchical model 

consisting of nodes that represent decisions or attribute 

tests, branches that represent the results of those tests, 

and leaf nodes that represent the final decision or 

classification. These trees are constructed using 

algorithms such as ID3, C4.5, and CART, which select 

the best attributes to split the data at each node based 

on criteria such as information gain or Gini impurity 

[27], [28]. On the other hand, random forest is an 

ensemble learning system that builds multiple decision 

trees and combines their predictions to improve 

accuracy and control overfitting. Each tree in the forest 

is trained on a random subset of the data and a random 

subset of the features, which introduces diversity 

among the trees. The final prediction is made by 

averaging the predictions using majority voting for 

classification [29], [30].     

The three models used will be trained and tested 

using a dataset of 7,673 data consisting of temperature, 

pressure, humidity, and vibration measurements, with 

the data labeling process conducted based on the 

maintenance logs provided by the sugar agro-industrial. 

Anomalies in sugar cane milling machines that will be 

detected include various suspected damages, such as 

electrical damage and thermal damage. The sensors 

used are considered capable of representing the 

machine's behavior completely.  

The dataset is obtained from sensors installed on a 

sugar cane milling machine with 5 rollers and a 7,000 

ton per day (TCD) capacity. A total of 70% of the 

collected data will be used for training, and 30% will 

be used for testing, according to the three models 

employed: logistic regression, decision tree, and 

random forest. The data that has been tested will then 

be evaluated using several measurement metrics, 

especially from the accuracy and goodness model. In 

real-world implementation, the system is real-time 

because it functions in early detection and is 

implemented on a real scale. 

 

3.1. Vibration parameter 

The vibration aspect in an industry is one of the 

important indicators in predictive maintenance 

practices. In this study, the sensor used was a YDS106 

type. Vibration monitoring has proven to be an 

effective method for finding damage to machine com-

ponents [31], [32], [33]. In the diagnosis of machine 

operation  using  vibration parameters, ISO 22096:2007
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Table 1. Comparison with previous research 
 

No Authors Scope Contribution Performance  Variable 

1. Alcazar et 

al. [34] 

Construction 

tools 

industry 

The research contributes to providing 

a framework for security solutions in 

industrial using supervised learning 

for real time anomaly detection in the 

construction industry. 

SVM (92.3%), 

RF (91.5%), 

CNN (94.2%) 

Temperature, 

flow, speed, 

pressure. 

2. Gamal et 

al. [35] 

Steel plate 

product 

industry 

The research contributes in providing 

an anomaly detection solution by 

supervised learning in steel plates. 

DT (91.1%), 

KNN (82.9%), 

RF (92.9%), 

SVM (86%), 

LR (88.3%), 

MLP (73.9%) 

Pixel areas, 

perimeter, log 

areas, length of 

conveyor, type 

steel, thickness, 

luminosity. 

3. Huang et 

al. [36] 

Rotating 

machinery 

chemical 

industry 

The findings reveal intelligent fusion 

that combine the favorable characters 

of different to drive the development 

of fault diagnosis prediction 

BNN (91.6%), 

ENN (27.2%), 

RBFN (83.6%), 

PNN (66%), 

WNN (84.8%)  

Accelerometers 

4. Das & 

Das [37] 

Rotating 

machinery 

This paper introduces genetic 

algorithm to optimized boosted trees 

for fault identification in rotating 

machinery. 

GADA (99.8%) Tachometer, 

sounds, and 

accelerometers 

5. Wang et 

al. [38] 

Bearing 

machinery 

chemical 

industry 

This paper proposes a novel hybrid 

approach of a wavelet packet and 

random forests classifier for the fault 

diagnosis in rolling bearings. 

WPDRF 

(88.2%) 

Vibration 

6. Li et al. 

[39] 

Gearbox 

industry 

This work addresses the use of a deep 

random forest fusion to fault diagnosis 

for gearboxes by using acoustic and 

accelerometer. 

DRF (97.7%) Acoustic & 

vibration 

7. Chow et 

al. [40] 

Concrete 

material 

industry 

This implementing deep learning for 

anomaly detection of defects on 

concrete structures. 

DNN (65.87%) Fusion 

8. Scime & 

Beuth [41] 

Laser 

machinery  

This paper proposes autonomous 

detection of many anomalies of 

defects in laser powder bed fusion 

CNN (85%) Fusion 

9. Cooper et 

al. [42] 

Milling 

machinery 

metal 

This paper demonstrates the detection 

of anomalies in the time-frequency 

domain of the tool's acoustic spectrum 

during cutting operations. 

GAN (90.56%) Acoustic 

10. Mattera & 

Nele [43] 

Wire arc 

additive 

This paper compares unsupervised, 

supervised, and semi-supervised 

approaches with small datasets in wire 

arc additive manufacturing. 

LR (95.3%), RF 

(95.7%), DT 

(93.7%), CNN 

(96.8%) 

Voltage signals 

11 Proposed 

Research 

Milling 

machinery 

sugarcane 

agroindustry 

This study develops and validates a 

machine-learning-based anomaly 

detection framework for sugarcane 

milling machines, integrating 

requirement analysis, model 

comparison, and system architecture. 

LR (89.70%), 

DT (97.87%), 

RF (98.13%) 

Vibration, 

temperature, 

humidity, 

pressure 

Note:  SVM = support vector machine, RF = random forest, CNN = convolutional neural networks, DT = decision tree, KNN = k-nearest 

neighbor, NB = naïve bayes, LR =logistic regression, MLP =multi-layer perception, BNN = backpropagation neural network, ENN = elman 
neural network, RBFN = radial basis function neural network, PNN = probabilistic neural network, WNN = wavelet neural network, GAADA 

= genetic algorithm and adaboost,  WPDRF = wavelet packet denoising random forest, DRF = deep random forest, DNN = deep neural network,  

GAN = generative advers network
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is the reference. Vibration is the oscillatory motion of 

equipment around its equilibrium position. In the 

context of vibration, any change in the amplitude or 

frequency of the signal indicates that the machine 

performance is impaired [44], [45]. Vibration analysis 

can be an effective tool for diagnosing looseness, 

eccentricity, imbalance, blade defects, misalignment, 

defective bearings, damaged gears, and cracked or bent 

shafts [46], [47]. In practice, predictive maintenance 

has various advantages compared to other parameters, 

including high accuracy, sensitivity to various types of 

defects, and being a non-invasive or non-destructive 

method [48], [49]. 

 

3.2. Temperature parameter 

Temperature is one of the important parameters in 

predictive maintenance prediction and is usually 

described through fluctuations in the running machine. 

In this study, the sensor used is a heat-resistant RTD 

PT100. Temperature can provide an overview of 

potential problems that occur in a machine through 

several assumptions, such as overheating or 

inefficiency [50]. In a milling machine, temperature can 

describe the performance of the machine, whether it is 

in accordance with its capacity and whether it is 

receiving a sufficient electricity supply. Stable 

temperature, in accordance with the criteria, is closely 

related to the performance of an industrial machine. 

Monitoring temperature fluctuations is crucial to ensure 

operational efficiency, safety, and equipment longevity 

[51]. Temperature anomalies, if not detected, can cause 

equipment damage, production disruptions, and safety 

hazards [52]. 

 

3.3. Pressure parameter 

The pressure on the milling machine is used for 

measurement in relation to the pump on the milling 

machine after the Nira is squeezed. In this study, the 

sensor used is a P20T. The juice that has been produced 

will be pumped to the next machine for further 

processing. Pump pressure that does not meet the 

criteria will reduce the yield channeled to the next 

process [53]. This affects the sugar yield in the final 

product. A too-high-pressure sensor is indicative of an 

overload phenomenon, while a low-pressure sensor is 

indicative of a leak in the component [54], [55]. 

Pressure sensors also do not directly cause total damage 

to the milling machine; however, they can serve as an 

early indicator or early detection of major damage [56]. 

 

3.4. Humidity parameter 

Excessive humidity in the sugarcane milling 

machine environment can be a significant factor 

contributing to various forms of systemic damage. In 

this study, the sensor used is an SHT85. High humidity 

accelerates the oxidation process of metals, triggering 

corrosion in vital components such as bearings, shafts, 

gears, and electrical connectors. This ultimately 

reduces efficiency, accelerates mechanical wear, and 

increases the risk of total machine failure [57]. In 

addition, modern sugarcane milling machines equipped 

with electronic systems and digital sensors are highly 

susceptible to condensation due to high humidity, 

which can cause short circuits, insulation disorders, and 

even total sensor failure [58]. Excess humidity also 

encourages the growth of microorganisms that 

contaminate processed products, thereby reducing 

product quality. Therefore, humidity sensors play a 

crucial role as anomaly indicators in predictive 

maintenance systems. Changes in humidity trends from 

historical values can indicate damage such as cooling 

system leaks, damaged seals, or abnormal changes in 

the operating environment [59]. 

 

3.5. Evaluation of prediction performance 

To measure prediction performance, several 

evaluation metrics will be used, including the confusion 

matrix, the area under the curve-receiving operating 

characteristic (AUC-ROC), and the mean squared error 

(MSE). In the confusion matrix evaluation, 

performance will be measured using accuracy, 

precision, sensitivity, and F1-score. The accuracy, 

precision, sensitivity, and F1-score values are obtained 

from a 2 x 2 table that compares correct answers and 

incorrect answers. In the confusion matrix, there are 

true positive, true negative, false positive, and false 

negative. True positive and true negative are 

measurement results that indicate a direct correlation 

between the actual value and the predicted value, while 

false positive and false negative are measurement 

results that show a non-linear relationship between the 

actual value and the predicted value.  

Evaluating prediction performance, there are also 

AUC-ROC and MSE, which are used to determine the 

goodness of the model in predicting classification. In 

measuring AUC-ROC, there is a standard: if the value 

is close to 1, then the model can be said to be improving 

[54]. Conversely, in MSE, the smaller the number 

produced, the better [60]. The details of the 

measurement formulas, including accuracy, precision, 

sensitivity, F1-score, AUC-ROC, and MSE, are 

presented as follows: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
                           (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                  (2) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
                        (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
                 (4) 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
 ∑(𝑦𝑖 − ŷ𝑖)

2 

𝑛

𝑖=1

             (5) 
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𝐴𝑈𝐶 − 𝑅𝑂𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑡))𝑑𝑡
1

0

                     (6) 

The prediction performance evaluation system is a 

crucial component in assessing the accuracy of a model, 

particularly in classification tasks. Several commonly 

used evaluation metrics include accuracy, precision, 

and sensitivity. In this context, several standard 

notations are applied: TP (true positive) refers to the 

number of positive cases correctly classified by the 

model; FP (false positive) refers to negative cases 

incorrectly classified as positive; TN (true negative) 

represents the number of negative cases correctly 

identified; and FN (false negative) refers to positive 

cases that are incorrectly classified as negative. 

Meanwhile, the mean squared error (MSE) formula 

involves the notation n, which indicates the total 

number of observations in the dataset. The notation yᵢ 

represents the actual value of the i-th observation, while 

ŷᵢ denotes the predicted value for that same observation. 

For more advanced classification model evaluation, 

such as the area under the curve - receiver operating 

characteristic (AUC-ROC), the notations TPR (true 

positive rate), equivalent to sensitivity, and FPR (false 

positive rate), which refers to the proportion of actual 

negative cases incorrectly classified as positive, are 

used. Lastly, dt denotes the differentiation with respect 

to variable t, commonly used in integral calculations 

within ROC curve analysis. 

 

3.6. Research stages 

The research began with the collection of 

temperature, pressure, vibration, and humidity data 

obtained from sensors installed in sugarcane milling 

machines to monitor the performance of the sugarcane 

milling machine. The data collected from the sensors is 

raw data that is then checked for missing values, 

cleaned, and normalized. 

The next step is to verify and clean the data to 

eliminate empty values, ensuring it is ready for 

analysis. At this stage, it involves checking the data for 

validity. The handling of missing data was performed 

using simple imputation, specifically filling in previous 

values (forward fill). Normalization was then applied 

using minimum-maximum normalization, ensuring all 

values fell within the range of 0-1 for subsequent data 

processing. Sensor observation data was collected 21 

times a day over a period of 1 year, as the dataset used. 

Data that is clean, normally distributed, free from 

multicollinearity issues, and not affected by 

autocorrelation phenomena will be processed further in 

the analysis stage using three selected machine learning 

models: logistic regression, decision trees, and random 

forest. Each of these models was chosen because it 

represents different approaches to classification, 

ranging from statistical probability-based methods to 

rule-based learning and ensemble techniques. After the 

models are trained and tested, the results of the analysis 

will be carefully compared using several evaluation 

metrics, particularly the confusion matrix and 

additional statistical measures, to ensure the reliability 

and validity of the findings. Once the comparative 

evaluation is complete, the results will undergo a 

deeper investigation through feature importance 

analysis, which aims to identify the most significant 

variables that influence the objectives of the study. This 

step provides practical insights for interpretation and 

decision-making. The complete stages of this research 

process are systematically illustrated in Fig. 1. 
 

Start

Finish

Problem identification

1. The sugar agroindustry has a crucial role in meeting sugar demand

2. Sugarcane agroindustry operations are disrupted due to milling machine disruptions

3. Drastically increased machine energy consumption, decreased production efficiency, 

process stoppages, and degradation of end product quality.

Problem formulation and research objectives

Data collection on engine sensors

Data processing and modeling

Machine learning data processing

Decision tree Random forestLogistic regression

Fault anomaly early detection system in sugar agroindustry 

milling machine through machine learning approach.

Feature importance analysis

System architecture design

Missing values, normalization, multicolliniearity, 

and autocorrelation

 
 

Fig 1. Research stages of sugarcane milling machine 

anomaly prediction through machine learning 

 
4. RESULTS AND DISCUSSION  

4.1. Early fault detection system development 

The development of a system is fundamentally 

determined by the specific requirements of the industry 

in which it will be applied. In this research, the 

requirements are categorized into three primary 

aspects: technical, functional, and non-functional. 

These aspects are further visualized through block 

diagrams that illustrate abstract components and their 

interrelationships. The diagrams highlight essential 

system elements, including sensors, data processing 

units, feedback mechanisms, and system control. 

Focusing on the sugarcane milling machine as the 

primary object of study, this research emphasizes the 

need for accurate, real-time monitoring of critical 

subsystems. To achieve this, a set of sensors 

(temperature, humidity, vibration, and pressure) is 

deployed to collect relevant operational data from 

different stages of the milling process. 

The sensor data is first transmitted to a centralized 

database to ensure secure and structured storage. Once 
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stored, the data is processed through a data control 

system where advanced analysis techniques are 

employed to detect anomalies and predict potential 

faults. These insights are expected to help decision-

makers maintain efficiency, minimize downtime, and 

prevent costly machine failures. In doing so, the system 

serves as an intelligent support tool for operational 

management in the agroindustry. A detailed overview 

of the system requirements designed for anomaly 

detection in the sugarcane milling process is provided 

in Table 2. 
 

Table 2. System requirement 
 

Requirements Detail 

Technical 1. Temperature, vibration, 

pressure, and humidity 

sensor (data act system) 

2. Technician, connector data, 

and operator (data 

processing & control) 

3. Data visualization and 

reporting system 

Functional 1. The system can collect data 

through the sensors used in 

real time 

2. The system can analyze 

anomaly detection data 

using machine learning 

3. The system can provide 

warning notifications to 

stakeholders in real time 

4. The system can display data 

in an interactive dashboard 

of machine monitoring 

Non-functional 1. The system is responsive 

and has fast latency 

2. The system has high 

accuracy in detection 

3. The system must be scalable 

or adaptive 

4. The system has data 

encryption to protect 

information. 

5. The system has a user 

interface friendliness and 

fully documented. 

 

The block diagram of the fault anomaly detection 

system in the sugarcane agro-industrial milling 

machine will be divided into three parts: data 

acquisition, data processing, and action. All these parts 

are interconnected and have their respective roles. Data 

acquisition is tasked with collecting data through 

sensors installed on the machine. Data processing and 

control will store and process data to predict fault 

anomalies, producing a report. Action is taken based on 

the decision-making process, informed by the 

prediction results obtained.  

The proposed system approach is also expected to 

be scalable, allowing it to be applied to other sugar cane 

mills, as there are similarities in damage indicators 

between one sugar cane mill and another. The details of 

the fault anomaly detection object abstraction at milling 

machine are presented in Fig. 2. 

 

4.2. Data processing and modelling 

Data that has been collected and will be used in 

machine learning modeling needs prerequisite testing 

to validate the data used. The prerequisite tests used in 

this case are multicollinearity testing and auto-

correlation testing. Multicollinearity testing is 

conducted to determine the correlation between 

independent variables, as measured by the variance 

inflation factor (VIF). Data is said to have high multi-

collinearity if it produces VIF> 10, said to be moderate 

multicollinearity if VIF 5-10, and said to be low 

multicollinearity if VIF<5 [61]. In addition to 

multicollinearity, there is an autocorrelation test, which 

is a condition of checking the correlation between 

members of a series of observations sorted by time or 

space. In this study, the Durbin-Watson test will be 

used, with an indicator close to 2. If the Durbin-Watson 

(DW) value is closer to 2, it indicates the absence of 

autocorrelation [62]. 

The results of multicollinearity testing found that 

all data used in the test belonged to low 

multicollinearity. In more detail, temperature gets a 

VIF value of 1,006, pressure of 1,008, vibration of 

1,010, and humidity of 1,000. Meanwhile, the 

autocorrelation prerequisite test shows that there is no 

autocorrelation because it gets a DW value of 1.969. 

Based on the prerequisite testing obtained, it is known 

that the data obtained is suitable for further use in 

machine learning testing. The data will then be 

prepared and divided for training and for testing, 

roughly 70% of the data (5,371 data) and 30% of the 

data (2,302 data). 

 

4.3. Prediction through logistic regression, decision 

tree, and random forest 

To evaluate the feasibility of using machine 

learning for anomaly detection within the proposed 

system context, several models were trained and tested 

using historical sensor data collected from the relevant 

machines. Based on the analysis that has been done, it 

is found that random forest has the best prediction 

ability compared to other models, namely logistic 

regression and decision tree. Random forest is a better 

model because this model can handle overfitting 

problems in the prediction process. Random forest can 

bagging or bootstrap aggregating is an ensemble 

learning technique that performs resampling in parallel 

and  combines  the  results  to produce a final prediction. 
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Fig 2. Proposed system architecture concept 

 

Random forest has the ability to obtain a globally 

optimal solution, this makes random forest as an 

ensemble model superior to a single model [63]. On the 

other hand, random forests are also able to reduce bias 

and variance, this is because there is a merging of 

several trees so that it can produce low-bias and low-

variance prediction results. These results are in line 

with research conducted by Gamal et al. [35], which 

shows that random forest is also the best approach for 

predicting damage to steel plates with an accuracy of 

92.9%. Mattera & Nele [43] also showed similar 

results, making the random forest approach the best 

approach with an accuracy of 95.7% in predicting 

safety in the manufacturing industry, capable of 

detecting data manipulation, overload, and intrusion. 

Furthermore, Li et al. [39] developed a model using 

deep random forests to predict anomalies in gearboxes 

and achieved an excellent accuracy of 97.7%. On the 

other hand, Wang et al. [38] conducted development by 

combining wavelet packet and random forests for 

predicting anomalies in chemical industry gear 

bearings with an accuracy of 88.2%. 

Decision tree also has a performance that is not 

much different from random forest, this is because the 

decision tree has a similar working principle to random 

forest. However, in creating a solution, the decision tree 

only considers local solutions without considering 

other branches of the tree. Research conducted by 

Mattera & Nele [43] in predicting the security of 

manufacturing industry data shows an accuracy that is 

not significantly different from that of random forest, 

which is 93.7%. Halabaku & Bytyci [64] stated that the 

decision tree becomes a relatively sensitive model, 

capturing noise as a meaningful pattern, thus reducing 

the robustness of the decision tree model. Additionally, 

the decision tree, as a single model, often experiences 

overfitting in the prediction process. As a result, the 

complete prediction and comparison results of the 

anomaly fault detection system on the sugarcane 

agroindustry milling machine are presented in Table 3 

and Fig. 3. Logistic regression is a machine learning 

model that has lower accuracy compared to decision 

trees and random forests. Logistic regression is one of 

the models that has limitations in capturing nonlinear 

patterns between predictor variables (temperature, 

humidity, vibration, and pressure sensor data) and the 

log of the target variable (fault anomaly detection). This 

finding aligns with Borucka & Grzelak [65], which 

demonstrates that the use of logistic regression in 

evaluating the efficiency of production machines yields 

an accuracy of only 67.4% with an AUC value of 

0.7156.  
 

Table 3. Comparison of the performance of fault anomaly prediction systems in sugar agroindustry milling 

machines 
 

Machine 

Learning 

MSE 

Train 

MSE 

Test 

Accuracy 

Train 

Accuracy 

Test 

F1 

Score 

AUC 

Score 

Precision 

Score 

Recall 

Score 

LR 0.098 0.102 90.13% 89.70% 84.84% 0.719 44.85% 50.00% 

DT 0.016 0.021 98.34% 97.87% 97.79% 0.906 97.69% 90.60% 

RF 0.000 0.0186 100% 98.13% 98.11% 0.973 95.98% 93.73% 

Note: Machine learning approach (LR = Logistic Regression, DT = Decision Tree, RF = Random Forest) 
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Fig 3. Confusion matrix (a) logistic regression, (b) decision tree, and (c) random forest 

 

On the other hand, logistic regression is also 

difficult to identify complex interactions that occur 

between variables. The interaction between predictor 

variables in this case is classified as a complex 

interaction because it has four predictor variables. This 

is further exacerbated by the sensitivity of logistic 

regression to noise; the presence of noise in the dataset 

will reduce the performance of logistic regression. 

Research by Gamal et al. [35] shows that logistic 

regression is not superior to random forest and decision 

tree in predicting steel plate damage. 

This research presents a new approach to digital 

transformation, particularly in the early detection of 

agroindustry machinery. Most early detection research 

on machinery is conducted in another industry with 

different conditions, such as domain-specific 

applications, source data, evaluation setups, and high 

complexity [66], [67], [68]. Research by Hu et al. [66] 

was conducted to detect damage to bearing components 

in the petrochemical industry using vibration signals as 

a single predictor variable. The anomaly detection 

system built has a relatively good accuracy of 95.58%. 

Wen et al. conducted fault detection on screw pumps in 

the petrochemical industry using several indicators as 

predictor variables, such as voltage, power, load, 

torque, rotational speed, and pressure. The results of the 

study have a fairly high accuracy, ranging from 69.5% 

to 75.6% [69].  

In comparison with the manual inspection system 

implemented by sugar factories, there are various 

advantages, including the fact that the system is more 

proactive than manual inspections, which are reactive 

because decisions are only made after symptoms 

appear. Machine learning and sensor-based inspection 

systems are capable of providing real-time checks, 

enabling regular monitoring of machine conditions and 

eliminating human subjectivity, as they have learned 

from machine behaviour. The machine learning and 

sensor-based inspection system can provide an 

overview of complex symptom relationships that 

a b 

c 

http://dx.doi.org/10.30656/jsmi.v9i2.10530


 
Jurnal Sistem dan Manajemen Industri Vol 9 No 2 December, 2025, 135-149 

 

 

144 http://dx.doi.org/10.30656/jsmi.v9i2.10530  

 

cannot be captured through manual inspection due to 

the interplay between multiple variables involved. 

4.4. Feature importance 

Feature importance is a crucial stage in identifying 

the most important or contributing features to a 

system's design. In this research, feature importance is 

performed at the end to determine how the system 

makes decisions, as well as to validate the results. The 

results of feature importance are presented in Table 4. 
 

Table 4. Features an important analysis 
 

Feature LR DT RF 

Vibration 2.170 0.505 0.330 

Temperature 0.689 0.394 0.366 

Pressure 0.594 0.074 0.185 

Humidity 0.229 0.025 0.111 
Note: Machine learning approach (LR = Logistic Regression, DT = 

Decision Tree, RF = Random Forest) 

The vibration feature is the most dominant aspect, 

followed by temperature, pressure, and humidity. 

Vibration is an aspect that is synonymous with 

disruption in a machine; the higher the vibration value 

produced, the higher the potential for the machine to 

experience disruption. Vibration is also useful, 

especially in the early detection of machine failure. 

This is because vibration signals can provide signs 

before other symptoms appear, such as changes in 

temperature, pressure, humidity, and sound. Even 

specific vibration signals can provide diagnostic 

capabilities regarding the type of damage experienced 

by the machine [70]. 

Previous research from Tambake et al. [71] 

performed diagnosis on CNC machines using vibration 

features of three axes as predictor variables and 

obtained perfect prediction results. Yuan et al. [72] also 

utilised vibration signals from rotors, gearboxes, and 

rolling bearings to detect rotating machine failures, 

achieving results with good accuracy. This demon-

strates that vibration signals are a crucial indicator in 

failure detection. 

4.5. Proposed corrective actions 

The proposed system emphasizes concrete 

corrective actions to mitigate failures once they are 

detected. This is essential because anomaly prediction 

alone, without actionable responses, would limit the 

system’s utility for industrial operations. Each anomaly 

indicator corresponds to a specific operational issue 

and requires targeted intervention. For instance, 

abnormal vibration patterns may signal bearing wear, 

roller imbalance, or shaft misalignment; in such cases, 

corrective measures such as bearing replacement, rotor 

rebalancing, and alignment adjustments should be 

carried out immediately. Elevated temperature readings 

can indicate lubrication failure, inefficient cooling, or 

electrical overload, requiring operators to inspect the 

lubrication system, verify cooling mechanisms, and 

evaluate motor performance. Likewise, abnormal 

pressure values may suggest leakage, pump overload, 

or seal degradation, which can be remedied through 

pump inspection, seal replacement, and pipeline 

maintenance. High humidity levels, often associated 

with corrosion and sensor malfunction, can be 

mitigated by ensuring adequate ventilation, repairing 

faulty seals, and implementing dehumidification 

procedures [73]. These corrective actions directly 

connect to the anomaly detection outputs, ensuring that 

the insights generated by the model lead to tangible 

operational improvements. 

To ensure practical implementation, the anomaly 

detection system should be integrated with a real-time 

alert mechanism that categorizes deviations into early 

warnings and critical alerts. This aligns with the 

predictive framework previously described, where 

models such as random forest not only achieve high 

classification accuracy but also provide probability-

based outputs that can be mapped to risk thresholds. 

Early warnings enable operators to schedule main-

tenance interventions without disrupting production, 

while critical alerts trigger immediate inspections and 

corrective actions to prevent system breakdowns [74]. 

In this way, the detection system evolves from a passive 

classification tool into a proactive decision-support 

mechanism. Furthermore, by structuring corrective 

actions into condition-based maintenance (CBM) 

strategies, the system enables a shift from traditional 

scheduled maintenance toward predictive and adaptive 

maintenance routines. This integration bridges the gap 

between predictive analytics and operational practice, 

ensuring that anomaly detection translates into 

operational resilience. 

By linking anomaly detection results with 

actionable protocols, the proposed framework ensures 

that failures are not only identified but also 

systematically addressed in alignment with the 

predictive system architecture described earlier. The 

corrective actions serve as the execution layer of the 

anomaly detection pipeline, reinforcing the value of 

predictive insights by preventing unplanned downtime, 

extending equipment life, and improving product 

quality. Moreover, documenting each corrective 

intervention in maintenance logs creates a feedback 

loop that strengthens the anomaly detection models 

[75]. Historical corrective action data can be 

reintegrated into the training process, refining model 

accuracy, improving feature importance interpretation, 

and supporting more efficient resource allocation. This 

closed-loop system positions the proposed framework 

as not only a predictive tool but also as a continuous 

improvement mechanism for smart agro-industrial 

operations. 

 

4.6. Research implications 

This study has considerable implications for the 

cane sugar agroindustry, producing operational 
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multiplier effects that extend beyond mere 

enhancements in monitoring. The system emphasises 

the strategic importance of leveraging historical and 

real-time data assets, a benefit that becomes 

increasingly pronounced for mills that already utilise 

digital record-keeping systems. The integration of these 

datasets enables advanced capabilities, including 

machine life prediction, workflow diagnostics, and 

enhanced process optimization. Its high-accuracy 

anomaly detection module serves as a practical 

decision-support tool that expedites maintenance 

responses, reduces diagnostic uncertainty, and shortens 

the duration of repair interventions [76].  

The earlier and more reliable identification of 

faults enables mills to transition from rigidly scheduled 

maintenance to condition-based maintenance, thereby 

directly reducing downtime, minimizing operational 

waste, and stabilizing throughput, while enhancing 

juice extraction efficiency and quality. Beyond these 

operational improvements, the AI-based framework 

provides a tangible modernization pathway for an 

industry that has remained technologically stagnant for 

centuries. It strengthens mill competitiveness, 

facilitates scalable digital transformation, and offers a 

replicable model for data-driven innovation across 

agro-industrial processing sectors [77]. 

 

5. CONCLUSION  

This research develops a damage anomaly 

detection system for sugarcane milling machines to 

enhance production efficiency, particularly during the 

sap extraction process, while also preventing 

production stoppages, preserving product quality, and 

reducing energy consumption. By rigorously 

evaluating several machine learning models using 

historical sensor data, the random forest model 

emerged as the most accurate, achieving 98.13% 

accuracy with an average deviation of 1.86%. The 

decision tree achieved an accuracy of 97.87%, whereas 

logistic regression showed the lowest performance at 

89.70%, primarily due to its limitations in modeling 

non-linear relationships and variable interactions. This 

study addresses a significant research gap in the 

sugarcane agroindustry, as integrated machine 

learning-based anomaly detection systems have not yet 

been widely adopted. The research contributes to the 

field by both assessing the effectiveness of predictive 

models and proposing a system architecture suitable for 

implementation in sugar mill operations. The 

application of historical sensor data for fault detection 

represents a relatively novel approach in this industrial 

context. The findings align with the study’s objectives 

by demonstrating high prediction accuracy and 

presenting a viable system design that offers tangible 

solutions to pressing issues related to efficiency, 

product quality, and energy usage. 

Nevertheless, the approach has limitations, 

including testing conducted within a single mill 

environment, which affects the model’s 

generalizability. The system has not yet been validated 

in real-time conditions, and its economic viability has 

not been analyzed. Future work will focus on 

integrating real-time monitoring with the Internet of 

Things, exploring advanced deep learning models such 

as long short-term memory and autoencoders, 

incorporating explainable artificial intelligence to 

support technician decision-making, and evaluating the 

system’s economic and environmental impacts. 
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