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This study seeks to address the complicated optimization challenge inherent in cut 

order planning (COP) in the clothing manufacturing business, emphasising fabric 

consumption, computational economy, and production accuracy. Three optimization 

approaches were compared: adaptive heuristic scoring optimizer (AHOPS), hybrid 

metaheuristic optimization with simulated annealing (HIMOSA), and gradient-

based penalty-driven (GBPD). The results show that the GBPD method achieved the 

highest fabric utilization (87.13%), the fewest amount of fabric layers (12), and the 

maximum computational efficiency (0.022 seconds), significantly outperforming 

both conventional methods and alternative advanced approaches. AHOPS and 

HIMOSA, on the other hand, required more layers (15) and produced lower fabric 

utilization (around 69.70%), with HIMOSA demonstrating noticeably greater 

computational needs (0.527 seconds). The adaptive heuristic scoring mechanism and 

the combination of gradient descent and machine learning predictions, which 

successfully handled the combinatorial difficulties of COP, are responsible for 

GBPD's exceptional performance. These results offer useful information to 

manufacturers looking for scalable, effective optimization solutions. They also point 

to potential avenues for future research, such as extending the applicability of GBPD 

to more intricate production scenarios and further honing machine learning models 

for increased efficiency and adaptability. 
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1. INTRODUCTION 

In the textile manufacturing industry, cut order 

planning (COP) is a crucial optimization problem that 

aims to reduce overall production costs by identifying 

effective fabric roll cutting techniques [1]. 

Fundamentally, COP entails producing ideal layer 

counts (number of fabric layers cut concurrently) and 

cutting ratios (number of garment pieces per size in a 

single fabric layer) while respecting limitations like 

fabric board length, consumption per garment, and 

order quantities [2]. The immediate effects of COP on 

labor efficiency, cost savings, and material waste 

reduction—three major competitive factors in the low-

margin garment sector—make its resolution urgent [3]. 

Fabric accounts for between 50 and 70 percent of the 

overall cost of a garment in a typical garment 

manufacturing process. Therefore, it is essential to 

optimize the cutting strategy. The necessity of figuring 

out the mix of markers (fabric patterns) and their lay 

counts to guarantee thorough coverage of all sizes and 

quantities requested by an order highlights the 

importance of this optimization [4]. 

The challenge of optimizing COP is rooted in its 

inherent computational complexity. The problem is a 
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form of combinatorial optimization widely recognized 

in operations research as being NP-hard. This 

classification means that as the number of garment 

sizes, order quantities, and production constraints 

increases, the time required to find a guaranteed 

optimal solution grows exponentially, rendering exact 

methods computationally intractable for most real-

world, industrial-scale scenarios. The COP problem 

shares characteristics with other classic NP-hard 

problems, such as the bin packing problem (BPP) and 

the cutting stock problem (CSP), where the goal is to fit 

a set of items into a minimum number of containers or 

to cut stock material to fulfill orders with minimal 

waste. Consequently, the development and analysis of 

efficient heuristics and metaheuristics are not merely 

beneficial but essential for providing practical, near-

optimal solutions in a reasonable timeframe, thereby 

justifying the focus of this study. 

Manual marker-making and rule-based heuristics 

(e.g., prioritizing high-demand sizes) are examples of 

conventional approaches that struggle with the 

combinatorial complexity and dynamic restrictions of 

COP. For example, fixed-pattern methods are unable to 

adjust to changes in cloth width or varied order 

numbers. Resulting in uneven production and less-

than-ideal utilization. Furthermore, these difficulties 

are made worse by contemporary expectations for mass 

customization, since conventional techniques are 

ineffective in managing large variety in size 

distributions [5]. In order to solve the cutting path 

problem in laser cutting applications, the study Zhang 

et al. [6] creates a variable neighborhood search for the 

node routing method and a two-step heuristic for the arc 

routing method. This results in near-optimal solutions 

with GAPs frequently below 0.5% and computation 

times under one second for small to medium instances, 

guaranteeing effective cutting paths and high-quality 

piece separation. For example, innovative software 

solutions for cutting planning have demonstrated im-

proved scalability and adaptability to dynamic pro-

duction requirements, achieving up to 80% reductions 

in solving time compared to conventional methods [7]. 

The absence of interaction with real-world 

production limitations (such as tool preheating and 

dynamic layout adjustments) and the scalability 

problems of accurate approaches like CPLEX for large-

scale instances, however, limit the approach and point 

to a research gap. In order to address the marker 

planning problem in the apparel industry, the study 
Tsao et al. [8] presents hybrid PSO-based heuristics 

(PSO–GA, PSO–SA, and SA–PSO). These heuristics 

achieve robust performance across various order 

configurations and reduce fabric length by 

approximately 5–6% when compared to the baseline 

moving heuristic, and in certain cases, up to 15% when 

compared to the benchmark bottom-left fill approach. 

Further research on scalability and real-time 

applications in various industrial contexts is necessary, 

as the suggested approaches are sensitive to parameter 

settings and incur higher computing times, particularly 

in hybrid variations. In contrast to traditional and 

learning-based baselines, the study Wang et al. [9] 

suggests a hierarchical sequence model (HEM) that 

dramatically increases the efficiency of solving mixed-

integer linear programming (MILPs), attaining up to an 

80% decrease in solving time. Recent studies have 

demonstrated the efficacy of reinforcement learning 

(RL) as a promising tool. Research has shown that RL 

can reduce cutting path lengths by approximately 

2.95%, while simultaneously reducing computation 

time by up to 96.75% [10]. These findings are attributed 

to the adaptive sequence adjustment and attention 

mechanisms that characterize the RL framework [10]. 

However, this method has shortcomings in terms 

of computational complexity caused by the hierarchical 

reinforcement learning architecture and difficulty in 

generalizing across various types of MILPs that were 

not seen during training. Emerging machine learning 

techniques for selecting cutting domains in mixed-

integer linear programming (MILP) emphasize ML-

based strategies to improve solver processing time [11]. 

For example, the hierarchical order model (HEM) can 

improve processing time by 16.4%. However, this 

model has drawbacks regarding computational costs for 

training complex machine learning models and 

challenges in applying the obtained tactics to various 

MILP instances and solver settings. The hierarchical 

sequence/set model (HEM) for selecting cutting planes 

in MILP has been proven to have better processing time 

than state-of-the-art techniques across various MILP 

benchmarks [12]. It presents a hierarchical 

sequence/set model (HEM). However, its limitations 

include the computational complexity of training 

complex hierarchical models and potential challenges 

in applying the acquired cut-selection techniques to 

different MILP problems. Additionally, optimizing 

continuous optimization processes (COPs) still relies 

heavily on genetic algorithms (GAs). It has been 

demonstrated that well-established GA techniques 

outperform heuristic-based commercial tools in terms 

of size ratio optimization. However, the scalability of 

GAs remains constrained in the context of complex 

problem instances [13]. 

In order to optimize cut order plan (COP) solutions 

in the garment manufacturing industry, the study 
Abeysooriya & Fernando [14] presents a canonical 

genetic algorithm (CGA). It shows greater economic 

efficiency than heuristic-based commercial software 

and achieves noticeably better size ratio optimization. 

However, the method has drawbacks, such as a 

decreased ability to solve more complicated COP 

issues because it requires larger populations and many 

generations to produce high-quality answers. 

Compared to conventional methods, the study by Junior 

et al. [15] offers a reinforcement learning approach for 

cutting path planning that integrates adaptive sequence 
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adjustment and attention mechanisms, leading to 

notable improvements in computation time of up to 

96.75% and path length reduction of about 2.95%. Its 

drawbacks include somewhat worse performance on 

fixed-length node scenarios than specialized deep 

reinforcement learning techniques, suggesting possible 

difficulties striking a balance between flexibility and 

optimization precision. Evolutionary algorithms, 

including adaptive biased random-key genetic 

algorithms (ABRKGA), have been employed in line-

cutting path planning (LCPP). This application has 

yielded enhanced convergence rates and practical 

applicability in industrial settings [15]. 

Even though COP solutions have been improved 

by previous research using heuristics, metaheuristics, 

and machine learning, there are still significant gaps in 

scalability, computational efficiency, and adaptation to 

changing production limitations. A systematic 

comparison of optimization frameworks suited to 

COP's multi-objective nature—specifically, striking a 

balance between fabric utilization, iteration count, and 

production accuracy—is conspicuously lacking from 

previous work, which concentrates on discrete 

algorithmic improvements (such as genetic algorithms, 

reinforcement learning, or hybrid models). In order to 

fill this gap, this work compares and contrasts three 

approaches—Mock ML, Genetic Annealing, and 

Gradient Descent—to see which is better at managing 

the combinatorial complexity of COP. This work 

focuses on real-world applications by combining 

gradient-based penalties, metaheuristic search, and 

heuristic scoring. Its goal is to give manufacturers 

actionable insights that limit overproduction (≤3% 

mistake) while retaining ≥85% fabric utilization. This 

study is crucial because the clothing industry urgently 

needs Low-cost, flexible COP systems that respond to 

changing demand patterns and mass customization 

tendencies [16]. 

While the literature contains numerous 

optimization approaches for COP, including genetic 

algorithms, reinforcement learning, and mixed-integer 

linear programming, a systematic comparison of 

fundamentally different optimization philosophies 

applied to this problem is lacking. This study aims to 

fill this gap by evaluating three distinct algorithmic 

paradigms chosen to represent a spectrum of 

optimization strategies. We selected: (1) an advanced 

heuristic (AHOPS), representing a fast, rule-based yet 

adaptive approach suitable for rapid decision-making; 

(2) a hybrid metaheuristic (HIMOSA), representing a 

powerful stochastic search method that combines the 

global exploration of GAs with the local refinement of 

SA, a common and robust strategy for complex 

combinatorial problems; and (3) a gradient-based 

method (GBPD), representing a deterministic, 

calculus-based approach that is novelly enhanced with 

machine learning. This comparative structure allows 

for a comprehensive analysis of the trade-offs between 

heuristic speed, metaheuristic robustness, and the 

precision of gradient-based optimization in the specific 

context of COP. 

The primary contributions of this research are 

delineated as follows: 

1) Development of a Comparative Framework for 

COP Optimization. This study introduces a 

systematic comparison of three optimization 

methodologies—Adaptive Heuristic Scoring 

Optimizer (AHOPS), Hybrid Metaheuristic 

Optimization with Simulated Annealing 

(HIMOSA), and Gradient-Based Penalty-Driven 

(GBPD)—to address cut-order planning (COP) in 

apparel manufacturing, focusing on fabric 

utilization, computational efficiency, and 

production accuracy. 

a. The Adaptive Heuristic Scoring Optimizer 

(AHOPS) introduces a novel heuristic framework 

whose primary innovation lies in its dynamic 

constraint adaptation and a scoring mechanism that 

explicitly incorporates residual demand awareness. 

Unlike traditional heuristics for COP that rely on 

static rules, AHOPS simulates an ML-driven 

approach by iteratively prioritizing size ratios that 

address the most pressing remaining order 

quantities, thereby adapting its search focus 

throughout the optimization process. 

b. The Hybrid Metaheuristic Optimization with 

Simulated Annealing (HIMOSA) framework 

contributes a tailored integration of a genetic 

algorithm (GA) with simulated annealing (SA) 

specifically for the COP domain. Its novelty is not 

in the hybridization itself, but in the design of its 

problem-specific fitness function, which penalizes 

overly complex patterns (i.e., those with an 

excessive number of unique sizes), and its use of an 

adaptive exponential cooling schedule (𝑇 = 𝑇_𝑜 ⋅
0.95𝑘). This architecture ensures a robust balance 

between the broad, global exploration characteristic 

of GAs and the practical need for implementable, 

low-complexity solutions in a manufacturing 

setting. 

c. The Gradient-Based Penalty-Driven (GBPD) 

method represents the most significant novel 

contribution of this work. It proposes a unique 

fusion of classical gradient descent optimization 

with a mock Machine Learning (ML) model. 

Specifically, the ML model, trained on historical 

COP data, provides a high-quality initial seed for 

the size ratios, drastically accelerating convergence 

towards promising regions of the solution space. 

The gradient descent technique then improves these 

ratios, and a proportional penalty function 

dynamically limits fabric and demand. This 

innovative way to solve the COP problem combines 

ML-guided initialization with penalty-driven 
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gradient refinement. It differentiates it from purely 

learning-based solutions and typical mathematical 

programming techniques. 

d. Combining machine learning predictions with 

gradient-based optimization. The suggested GBPD 

method uses fake ML models, gradient descent, and 

penalty-driven limitations to change how it works 

based on past COP data. 

e. Addressing Real-World Industrial Constraints. The 

study underscores the importance of scalability and 

adaptability in dynamic production settings, 

including fluctuating order quantities and multi-

color fabric limitations, which represent significant 

deficiencies in current COP frameworks such as 

genetic algorithms or reinforcement learning. 

f. Framework for Evaluating COP Methods Under 

Multi-Objective Trade-off Demons. By balancing 

competing metrics (fabric utilization, iteration 

count, and production accuracy), this work provides 

actionable insights for manufacturers to adopt low-

cost, adaptive COP systems aligned with mass 

customization trends and volatile demand patterns. 

g. Rigorous Experimental Validation on Generated 

Benchmarks. This research establishes a 

methodology for generating realistic benchmark 

instances and provides a detailed, per-instance 

performance analysis, addressing a critical gap in 

experimental standardization within COP literature. 

By evaluating the methods on metrics of fabric 

utilization, layer count, and computational time, it 

offers a robust framework for evaluating COP 

solutions under multi-objective trade-offs. 

The structure of this paper is as follows: Section 2 

reviews related works on COP optimization, Section 3 

details the methodology and algorithmic frameworks, 

Section 4 presents results and comparative analysis, 

and Section 5 discusses implications, limitations, and 

future directions. 

 

2. RELATED WORK  

Recent advancements in COP optimization have 

significantly improved fabric utilization and 

computational efficiency. However, critical limitations 

persist. For instance, hybrid particle swarm 

optimization (PSO)-based heuristics (e.g., PSO–GA, 

PSO–SA) have achieved 5–6% fabric length reductions 

over baseline methods. In some cases, these variants 

have been observed to reduce layouts by up to 15% 

compared to traditional bottom-left fill approaches. 

Nevertheless, the efficacy of these methodologies was 

found to be contingent upon parameter tuning and 

elevated computational overhead in hybrid variants. 

This limitation renders their real-time applicability in 

dynamic production environments impractical [4].  

Genetic algorithms (GA) and hybrid meta-

heuristic approaches (e.g., GA combined with 

simulated annealing or tabu search) are the most 

effective for optimizing cut order planning (COP) in 

apparel manufacturing. These approaches have been 

shown to reduce fabric waste (e.g., up to 15% savings 

in some cases). However, the review identifies several 

gaps, including a limited focus on cost and time 

parameters, reliance on outdated hardware in 

experimental setups, and underexplored potential for 

newer meta-heuristics (e.g., galactic swarm 

optimization) and AI-driven techniques to enhance 

COP solutions [17]. 

The study demonstrates that LINGO-based 

optimization achieves significant fabric savings (7.06% 

average efficiency improvement, with individual cases 

like shirts showing up to 12.42% savings) through 

mixed-integer nonlinear programming, outperforming 

manual cut order planning methods. However, it 

exhibits a lack of scalability to meet the dynamic 

demands of production. Furthermore, it does not 

address multi-color fabric constraints or real-time 

adaptability, which limits its industrial applicability 

compared to modern metaheuristic frameworks, such 

as genetic algorithms or reinforcement learning [18]. 

The study demonstrates that a novel software 

approach for cut order planning can achieve optimized 

fabric utilization (via parameters like total length, 

layers, and utility coefficients) and reduce waste in 

apparel manufacturing. These findings were validated 

through simulations and real-world testing on coat 

production. However, their work, similar to other 

specific software solutions, lacks a broader discussion 

on scalability for dynamic production demands, 

integration with existing CAD systems, and real-time 

adaptability to constraints such as multi-color fabrics, 

which are areas where modern metaheuristic or AI-

driven frameworks may offer advantage [7]. 

The study introduces a heuristic algorithm (HFSC) 

for fabric spreading and cutting in apparel 

manufacturing. This algorithm effectively minimizes 

cutting bed usage while meeting production 

requirements through a constructive procedure and 

iterative optimization loop. These conclusions were 

validated via 500 test cases. However, the study focuses 

on static production scenarios, neglecting to address 

dynamic constraints such as real-time order 

modifications or integrating multiple colors into fabric. 

Furthermore, its computational efficiency has not been 

assessed compared to current metaheuristic frame-

works, such as genetic algorithms and reinforcement 

learning [19]. 

This research illustrates that combining genetic 

algorithm (GA)-based sizing optimization with an 

integer programming (IP) model for cut order planning 

enhances garment fit and cost efficiency. This 

integration establishes a balance between 

personalization and production costs by examining case 

studies on skirt production. The proposed framework 

has been validated exclusively on a basic straight skirt 

case study, limiting its applicability to more complex 

garment types or dynamic multicolored fabric 
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situations. Additionally, it does not account for real-

time adaptability or scalability in large-scale industrial 

applications [20]. 

This study illustrates that a genetic algorithm 

(GA)-based method for cut order planning (COP) 

minimizes fabric waste, markers, and layers in garment 

production. This method realizes cost reductions by 

employing optimized cutting plans, which are 

confirmed through comparative analysis with heuristic 

techniques. However, the study concentrates on static 

production scenarios with fixed marker dimensions. It 

does not address dynamic order changes, multi-color 

fabric constraints, or scalability for large-scale 

industrial applications. Such limitations are common in 

GA-driven COP frameworks [21].  

The study demonstrated that integrating cut order 

planning (COP) and marker layout optimization (TDL) 

into a unified model (CT) using heuristics and 

metaheuristics (e.g., genetic algorithms, simulated 

annealing) achieves more accurate fabric length 

estimation (reducing overproduction by 5–10%) 

compared to traditional fixed-layout approaches. These 

findings were validated through seven industrial case 

studies. However, the model assumes static demand 

and uniform pattern counts across sections. Also, the 

model does not address scalability challenges in large-

scale applications, and the model does not address 

dynamic order adjustments or multi-color fabric 

constraints, which are critical for modern mass 

customization scenarios [3].  

 

Table 1. Literature review on COP
  

Author Year Method Findings Limitations 

Yang et al. 

[22] 

2011 Ant colony optimization 

(ACIP) 

Competitive with integer 

programming (IP); 

validated via Lingo 8.0 

simulations for stencil 

setup cost 

Tested on small-scale data; 

assumes static labor costs 

and stack characteristics 

M’Hallah & 

Bouziri [3] 

2016 Integrated COP and 

marker layout optimization 

(CT) using heuristics, 

simulated annealing (SA), 

and genetic algorithms 

(GA) 

Reduced overproduction 

by 5–10% compared to 

fixed-layout approaches 

Assumed static demand 

and uniform pattern 

counts; scalability 

challenges in large-scale 

applications 

Shang et al. 

[19] 

2019 Heuristic algorithm 

(HFSC) with constructive 

procedure and iterative 

optimization loop 

  

Achieved effective and 

efficient results in 500 test 

cases; minimized cutting 

bed usage 

Focused on static 

production scenarios; no 

real-time adaptability or 

multi-color fabric 

integration. 

Dere [23]  2020   

LINGO-based mixed-

integer nonlinear 

programming 

  

7.06% average fabric 

efficiency improvement 

(up to 12.42% for shirts) 

Lacks scalability for 

dynamic demands 

Alsamarah 

et al. [21] 

2021 Genetic algorithm (GA)-

based COP 

Improved fabric utilization 

from 80.88% to 83.5%; 

reduced markers from 6 to 

3 

Focused on static 

production scenarios; no 

multi-color fabric 

constraints addressed 

This Study - Comparative analysis of 

AHOPS (heuristic), 

HIMOSA (metaheuristic), 

and GBPD (ML-seeded 

gradient-based). 

The proposed GBPD 

method significantly 

outperforms prior 

methods, achieving 

87.13% fabric utilization 

with only 12 layers and 

near-instant computation 

(0.023s). It provides a 

scalable solution that 

addresses real-world 

constraints. 

The mock ML model in 

GBPD is based on 

historical data; 

performance on entirely 

new production types 

requires further validation. 

The study focuses on 

fabric utilization and 

computational time; a 

multi-objective cost model 

including labor could be a 

future extension. 
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The study demonstrates that an ant colony 

optimization approach (ACIP) effectively addresses 

layout problems in the fashion industry, achieving 

competitive solutions compared to integer 

programming (IP) and validating robustness through 

Lingo 8.0 simulations, particularly optimizing stencil 

setup costs for large-scale datasets. However, the study 

is constrained by its reliance on small-scale data testing 

and assumption of static labor costs and stack 

characteristics. These limitations preclude the study's 

ability to generalize to dynamic, real-world industrial 

settings, where rapid adjustments to variable 

constraints (e.g., fabric types, order changes) are 

imperative [22]. The following table in Table 1 offers a 

comparative analysis of the reviewed papers on cut-

order planning (COP) and related optimization methods 

in apparel manufacturing. 

 

3. RESEARCH METHODS  

3.1. COP 

One essential step in clothing production is cut 

order planning, or COP. Figuring out the best way to 

cut fabric to fit customer requests guarantees effective 

production while lowering total expenses. A scheduling 

technique called COP is applied in manufacturing 

settings that prioritize order. A list of pending orders is 

compiled, and the orders that should be processed 

within a given time frame are chosen. Setting ply height 

and spread length directly impacts cutting efficiency 

and costs, sectioning determines the number of sections 

and the distribution of garment sizes, and grouping 

orders optimizes fabric usage and lowers setup costs. 

These crucial decisions are what drive the COP process. 

By balancing fabric costs (based on total fabric length), 

spreading labor costs (influenced by ply height and 

spread length), cutting costs (related to pattern piece 

perimeter length and cutting speed), and any additional 

costs related to making new markers, the main 

objective is to minimize total cutting costs.  

Fig. 1 depicts the general process of COP, 

including the essential stages from order entry to the 

cutting room. The primary goal is to reduce total cutting 

costs by balancing fabric costs (based on total fabric 

length), spreading labor costs (affected by ply height 

and spread length), cutting costs (depending on pattern 

piece perimeter length and cutting speed), and any 

additional costs associated with creating new markers. 

The procedure must follow spreading guidelines such 

as maximum ply height and cutting table length. 

Finally, COP produces a thorough plan outlining the 

distribution of garment sizes within sections, marker 

efficiency, and cutting cost per garment, which is 

subsequently used in the marker-making process to 

create precise cutting layouts. The resulting bundles of 

cut pieces are then sent to the assembly system based 

on operational priorities, ensuring maximum fabric 

utilization while minimizing costs for a more 

responsive and competitive garment production 

process [24]. 

 

3.2. Optimization in COP 

Because of the wide range of sizes and erratic order 

numbers, optimization models in COP are necessary for 

mass customisation of clothing. Yan-mei et al. [26] 

suggested that one method reduces the number of 

cutting tables required by rapidly generating effective 

cutting plans using a probability search algorithm. 

Important limitations on this procedure include the 

cutting capacity of the table, the maximum number of 

layers that may be layered on each cutting table, and the 

requirement to satisfy demand for every size of 

garment. The goal is to meet all customer and 

production needs while reducing the overall number of 

cutting tables. 

 
 

 
 

 

Fig. 1. General process of COP [24] 
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Table 2. Apparel order for mass customization in 

COP [25] 
 

 Size 1 2 … I … M 

Number 𝑌_1 𝑌_2 … 𝑌_𝑖 … 𝑌_𝑚 

 

Table 2 shows factors such as the number of layers 

per table (𝑋_𝑗) and the number of pieces per garment 

size per table (𝑎_𝑖𝑗) are defined to ensure production 

efficiency and demand fulfillment. The optimization 

process entails randomly generating initial solutions 

based on production constraints, then using the 

probability search algorithm to find the optimal size 

combination plan that minimizes overproduction and 

fabric waste, and finally refining the solution through 

iterative adjustments to balance production capacity 

with demand, thereby improving fabric utilization and 

lowering labor costs [25]. 

 

3.3. Problem formulation 

The COP problem is formulated as a constrained 

optimization problem aiming to minimize total fabric 

consumption while satisfying all production demands 

and physical constraints. Let 𝑖 be the index for garment 

sizes, ranging from 1 to 𝑁, where 𝑁 is the total number 

of unique sizes in an order. Let 𝑘 be the index for 

cutting iterations (or distinct marker patterns), ranging 

from 1 to 𝐾, where 𝐾 is the total number of iterations 

required to fulfilll the order. The key parameters and 

decision variables are defined as follows: 

• Parameters: 

𝐷_𝑖: The total quantity demanded for size 𝑖. 
𝐵 : The maximum fabric board length available for 

a single marker. 

𝐶 : The fabric consumption (length) per garment 

piece (assumed constant across sizes for this 

model). 

• Decision Variables: 

Let 𝐿_𝑘: Number of layers in iteration 𝑘. 

Let 𝑟_𝑖𝑘: Ratio of size 𝑖 in iteration 𝑘. 

The mathematical term is defined as follows: 

a) Objective Function 

The objective remains to minimize total fabric 

consumption. 

Minimize total fabric consumption: 
 

∑ 𝐿𝑘 ∙ (∑ 𝑟𝑖𝑘 ∙ 𝐶

𝑁

𝑖=1

)

𝐾

𝑘=1

 (1) 

 

where C is the amount of fabric used per garment 

and 𝐾 is the total number of iterations [26]. 

b) Constraints 

1. Fabric Length Constraint: 

This constraint ensures that the length of any 

single marker does not exceed the available 

board length. 

∑ 𝑟𝑖𝑘 ∙ 𝐶 ≤ 𝐵    ∀𝑘 ∈ {1,2, … , 𝐾}

𝑁

𝑖=1

 (2) 

where B is the fabric board length [2, 17].  

2. Demand Fulfilllment: 

The demand fulfilllment constraint has been 

used to ensure that for each size 𝑖, the sum of 

pieces produced across all 𝐾 iterations (where 

the number of pieces in iteration k is the layer 

count 𝐿_𝑘 multiplied by the size ratio 𝑟_𝑖𝑘) is 

greater than or equal to the demand 𝐷_𝑖. 

∑ 𝐿𝑖𝑘 ∙ 𝑟𝑖𝑘 ≥ 𝐷𝑖       ∀𝑖 ∈ {1,2, … , 𝑁}

𝐾

𝑖=1

 (3) 

where 𝐷_𝑖 is the ordered quantity for size 𝑖  
[16, 17]. 

3. Non-negativity and Integrality: 
𝑳_𝒌 ≥ 𝟎 

𝑟_𝑖𝑘 ≥ 0 
(4) 

This formulation is consistent with previous 

research on COP's mixed-integer programming 

foundations, while stressing scalability and real-world 

constraints (such as ply limitations) [2]. 

 

3.4. Adaptive heuristic scoring optimizer (AHOPS) 

The Adaptive Heuristic Scoring Optimizer 

(AHOPS) is a novel framework designed to tackle the 

combinatorial complexity inherent in Cut Order 

Planning (COP). It employs a hybrid methodology 

integrating systematic ratio enumeration, dynamic 

constraint adaptation, and heuristic scoring 

mechanisms. This method enhances standard 

descriptive research paradigms by integrating 

exploratory pattern analysis with optimization-focused 

decision-making, leading to adaptive solutions tailored 

to residual demand dynamics.  

The initial phase of AHOPS involves generating 

all feasible size ratios (𝑟𝑖𝑘) that comply with the fabric 

length constraint. Recursive combinatorial search 

facilitates brute-force enumeration by systematically 

examining all possible combinations, ensuring that no 

potentially promising patterns are overlooked. AHOPS 

employs a gradual tightening technique for the fabric 

length constraint to prioritize high-utilization patterns 

at the outset. The algorithm is prompted to explore 

denser ratios in subsequent iterations by decreasing the 

allowable board length (𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐) by a specified factor 

(e.g., 10–20%) following each iteration [27]. This 

adaptive technique dynamically narrows the search 

space based on patterns of residual demand, aligning 

with the principles of descriptive research. 

A weighted scoring system that strikes a balance 

between two goals is used to evaluate ratios: 

1. Fabric Utilization: 

𝑈𝑆 =
∑ 𝑟𝑖𝑘 ∙ 𝐶𝑁

𝑖=1

𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐

 (5) 
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where 𝑈𝑆 is the utilization score, measuring how 

effectively the pattern uses available fabric. 

2. Demand Coverage: 

𝐶𝑆 =
∑ min(𝐿𝑘 ∙ 𝑟𝑖𝑘 , 𝐷𝑖)

𝑁
𝑖=1

∑ 𝐷_𝑖𝑁
𝑖=1

 (6) 

where 𝐶𝑆 is the coverage score, which measures 

progress toward fulfilling order quantities [28]. 

The composite score is calculated as follows: 

𝑆𝑐𝑜𝑟𝑒 = 𝛼 ∙ 𝑈𝑆 + (1 − 𝛼) ∙ 𝐶𝑆 (7) 

where demand fulfillment is ensured while 

utilization is prioritized by 𝛼 =  0.7, this dual-

objective formulation addresses the inherent trade-

offs between accuracy and efficiency in COP. 

AHOPS simulates machine learning (ML)-driven 

decision-making by including residual demand 

awareness in the scoring process. Patterns that 

disproportionately lower high-remaining demand sizes 

(e.g., S/S or L/S in early iterations) get a score increase, 

similar to how ML models prioritize essential features. 

This technique promotes convergence toward balanced 

production.  

The AHOPS workflow operates iteratively, as seen 

in Fig. 2. The algorithm starts by producing all 

conceivable size ratios (𝑟𝑖𝑘) that satisfy the fabric 

length requirement (∑𝑟𝑖𝑘 ⋅ 𝐶 < 𝐵) to ensure no viable 

pattern is overlooked. 
 

Algorithm 1 Adaptive Heuristic Scoring Optimizer (AHOPS) 

Require: Sizes (𝑆), Orders (𝑂), Board Length (𝐵), Consumption (C), ∝= 0.7 

 Ensure: Optimal cutting plan with iterations 𝐾. 

1. 𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐  ← 𝐵                                                 ⊳ Initialize dynamic board length  
2. 𝐾 ← 𝜃                                                                            ⊳ Initialize iteration list 
3. while ∑ 𝐷 > 0 do                                  ⊳ Continue until all demands are fulfilled 
4.        𝑅 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑡𝑖𝑜𝑠 (𝑆, 𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐 , C) ⊳ Bruto − force ratio enumeration  

[[5] 
5.        For all 𝑟𝜖𝑅  do 

6.            𝐿 ← min ([
𝐷𝑖

𝑟𝑖
])                  ⊳ Calculate max layers without overproduction                                                                    

7.           𝑈 ←  
∑ 𝑟𝑖 .𝐶

𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐  
                                                             ⊳ Utization score 

8.           𝑉 ←  
∑ min(𝐿.𝑟𝑖 .𝐷𝑖

∑ 𝐷𝑖
                                               ⊳ Demand coverage score 

9.           Score (r) ← 𝛼𝑈 + (1 − 𝛼)𝑉                          ⊳ Composite score function 
10.        End for 

11.        𝑟∗ ← arg max𝑟𝜖𝑅 𝑠𝑐𝑜𝑟𝑒 (𝑟)                                     ⊳ Select optimal ratio 

12.        𝐿∗ ← min ([
𝐷𝑖

𝑟𝑖
]) 

13.        Update 𝐷 ← 𝐷 − 𝐿∗ ∗ 𝑟∗                                 ⊳ Reduce remaining demand                                                     
14.        𝐾 ← 𝐾 ∪ {(𝐿∗ , 𝑟∗)}                                            ⊳ Record iteration details                                                     
15.        𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐  ← 0.9 ∗ 𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐                    ⊳ progressive constraint tightening                        
16. end while 

17. return 𝐾 

 

Fig. 2 Algorithm for the AHOPS method 

 

To emphasize high-utilization patterns, AHOPS 

dynamically tightens the permitted board length 

(𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐) After each iteration, gradually reduce it by 

a predetermined factor (e.g., 10%) to encourage denser 

ratios in subsequent stages. To coincide with COP's 

efficiency aims, each ratio is evaluated using a 

weighted scoring system that balances fabric utilization 

(∑𝑟𝑖𝑘  ⋅  𝐶/𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐) and demand coverage 

(∑ min(𝐿𝑘 ∙ 𝑟𝑖𝑘 , 𝐷𝑖) /  ∑𝐷𝑖). The bias (𝛼 =  0.7) 

favors utilization. The top-scoring ratio is chosen, and 

layers (Lk) are calculated to avoid overproduction. The 

residual demand (Di) is then updated, and constraints 

are tightened iteratively. This approach replicates 

machine learning-driven decision-making via 

prioritizing. Patterns that accelerate the convergence 

toward balanced output by disproportionately reducing 

high-remaining demand sizes. 

 

3.5. Hybrid metaheuristic optimization with 

simulated annealing (HIMOSA) 

The Hybrid Metaheuristic Optimization with 

Simulated Annealing (HIMOSA) technique combines 

genetic algorithm (GA) evolution with simulated 

annealing (SA) to navigate COP's combinatorial 

solution space while balancing exploration and 

exploitation. This method builds on previous work on 

hybrid metaheuristics by using adaptive cooling 

schedules and problem-specific fitness functions suited 

to fabric utilization and demand coverage [29]. 

The HIMOSA workflow operates iteratively, as 

seen in Fig. 3. Using Latin Hypercube Sampling, the 

method generates a diversified population of size ratios, 

ensuring a wide range of feasible solutions. Genetic 

operators, such as uniform crossover (50% gene 

inheritance probability) and mutation (10% adjustment 

rate), evolve ratios within fabric limitations (∑𝑟𝑖𝑘  ⋅
 𝐶 ≤ 𝐵). Simulated annealing uses a temperature 

parameter (𝑇) that decays exponentially (𝑇 =  𝑇0 ⋅
 0.95𝑘), allowing for the acceptance of inferior 

solutions to avoid local optima. A problem-specific 

fitness function evaluates solutions by integrating 

fabric usage (∑𝑟𝑖𝑘 ⋅ 𝐶/𝐵) with a penalty for complex 

patterns (e.g., ratios using > 60% of sizes), resulting in 

practical, high-coverage solutions. This hybrid 

technique combines GA's global search capabilities 

with SA's local refining to address COP's scalability 

issues while retaining solution quality [30]. 
 

Algorithm 2 Hybrid Metaheuristic Optimization with Simulated Annealing (HIMOSA) 
Require: Sizes (𝑆), Orders (𝑂), Board Length (𝐵), Consumption (C), 𝑇0 = 1000, 

cooling_rate=0.95, population_size=50 

 Ensure: Optimal cutting plan with iterations 𝐾. 

1. 𝑃 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒)⊳ Latin Hypercube Sampling  
2. 𝑇 ← 𝑇0                                                                             
3. 𝐾 ← 𝜃 
4. while  do 𝑇 > 0.1 and generations I 100 do                                   ⊳ Termination criteria 
5.        For all 𝑟 𝜖 𝑃  do  

6.            𝐿 ← min ([
𝐷𝑖

𝑟𝑖
])                                                                                      

7.           𝑈 ←  
∑ 𝑟𝑖 .𝐶

𝐵  
                                                                                ⊳ Utization score 

8.           𝑃 ← 1 − |
𝑛𝑜𝑛𝑧𝑒𝑟𝑜(𝑟)

|𝑆|
− 0.6|                                     ⊳ pattern complexity penalty 

9.           Fitness (r) ← 𝑈 ∗ 𝑃                           
10.        End for 

11.        𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ← 𝑇𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝑃, 5)                                    ⊳ Parent selection 
12.        𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 (𝑃𝑝𝑎𝑟𝑒𝑛𝑡𝑠 , 5)                                  ⊳ Uniform crossover 
13.        𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑀𝑢𝑡𝑎𝑡𝑒 (𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 , 5)                                           ⊳ Mutation rate 
14.        For all 𝑟𝑛𝑒𝑤 𝜖  𝑃𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔   do  

15.             △ E ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑟𝑛𝑒𝑤) − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑟𝑜𝑙𝑑) 

16.            𝑖𝑓 △ E > 0 or rand () < 𝑒−△
𝐸

𝑇 𝑡ℎ𝑒𝑛  
17.                  replace 𝑟𝑜𝑙𝑑 with 𝑟𝑛𝑒𝑤                                                        ⊳ SA acceptance 

18.            end if 
19.       end for 
20.        𝑇 ← 𝑇 ∗ 𝑐𝑜𝑜𝑙𝑖𝑛𝑔_𝑟𝑎𝑡𝑒                                                         ⊳ Exponential decay                                                     
21.        𝐾 ← 𝐾 ∪ {𝐵𝑒𝑠𝑡 (𝑟)}                                                              ⊳ Record iteration                                                      
22. end while 

23. return 𝐾 

 

Fig. 3 Algorithm for the HIMOSA method 

 

3.6. Gradient-based penalty-driven (GBPD) 

The Gradient-Based Penalty-Driven (GBPD) 
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employs gradient descent and proportional penalty 

mechanisms to iteratively refine size ratios and layer 

counts, addressing COP’s multi-objective trade-offs 

between fabric utilization and production accuracy. 

This method extends gradient-based frameworks by 

integrating dynamic penalty functions that enforce 

adherence to fabric constraints and demand fulfillment 

[31]. 

Central to GBPD is its gradient update rule, which 

modifies ratios using partial derivatives of the objective 

function (minimizing total fabric consumption) with a 

learning rate (η = 0.01) to ensure stable convergence. 

To enforce adherence to fabric constraints (∑rik ⋅ C ≤ 

B), a proportional penalty function dynamically adjusts 

ratios by penalizing deviations from ideal layer-to-

length ratios (Lk ∝ ∑rik), with λ = 0.5 governing 

penalty strength. The GBPD workflow operates 

iteratively, as shown in Fig. 4. 
 

Algorithm 3 Gradient-Based Penalty-Driven (GBPD) 

Require: Sizes (𝑆), Orders (𝑂), Board Length (𝐵), Consumption (C), 𝜂 = 0.1 , 𝜆 =
0.5, ML_model 

 Ensure: Optimal cutting plan with iterations 𝐾 

1. 𝑟 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜𝑠𝑊𝑖𝑡ℎ𝑀𝐿 (𝑆, 𝐷, 𝑀𝐿_𝑚𝑜𝑑𝑒𝑙)⊳ ML − driven initialization  
2. 𝐾 ← 𝜃                                                                             

3.  𝐿 ← min ([
𝐷𝑖

𝑟𝑖
])                                                                  ⊳ Initial layer calculation                                   

4. while do ∑ D > 0 and ‖∇‖ ≥  0.001 do                                     ⊳ Convergence criteria 
5.            ∇← ∇(∑ 𝐿 ∗ 𝑟𝑖 ∗ 𝐶𝑁

𝑖=1 )                                                     ⊳ Compute gradient                                        

6.           𝑝𝑒𝑛𝑎𝑙𝑡𝑦 ← 𝜆 ∗ |
𝐿

∑ 𝑟𝑖
− 1|                                             ⊳ Proportional penalty 

7.           r ← 𝑟 − 𝜂 ∗ (∇ + penalty)                                     ⊳ Gradient descent update 
8.           r ← 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑜𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝑟, 𝐵, 𝐶)                        ⊳ Enforce ∑ 𝑟𝑖 ∗ 𝐶 ≤ 𝐵     

9.          𝐿 ← min ([
𝐷𝑖

𝑟𝑖
])                                                                       ⊳ Update layers    

10.         𝐷 ← 𝐷 − 𝐿 ∗ 𝑟                                                      ⊳ Reduce remaining demand                                                     
11.         𝐾 ← 𝐾 ∪ {(𝐿 ∗ 𝑟)}                                                             ⊳ Record iteration           
12. end while 

13. return 𝐾 

 

Fig. 4 Algorithm for the GBPD method 

 

Initial ratios are seeded via a mock machine 

learning (ML) model trained on historical COP data, 

accelerating convergence toward high-utility patterns. 

This integration of gradient-driven refinement, 

constraint-aware penalties, and ML-guided 

initialization enables GBPD to balance fabric 

utilization and production accuracy while adapting to 

dynamic order quantities. 

GBPD updates by adjusting size ratios (𝑟𝑖𝑘) using 

gradient descent to minimize the objective function: 
 

 

𝑟𝑖𝑘
(𝑡+1)

= 𝑟𝑖𝑘
(𝑡)

− 𝜂 ∙ ∇ (∑ 𝐿𝑘 ∙ ∑ 𝑟𝑖𝑘 ∙ 𝐶

𝑁

𝑖=1

𝐾

𝑘=1

) 

 

(7) 

 

where 𝜂 = 0.01 is the learning rate. 

Also, penalizes deviations from ideal layer-to-

length ratios (𝐿𝑘  ∝  ∑𝑟𝑖𝑘) to ensure balanced fabric 

consumption:  
 

 

Penalty = 𝜆 ∙ |
𝐿𝑘

∑ 𝑟𝑖𝑘  
− 1| 

 

8 

where 𝜆 = 0.5 controls penalty strength. 

3.7. Experimental setup and benchmark instance 

generation 

To ensure a robust and comprehensive evaluation 

of the proposed algorithms, and in the absence of a 

standardized public benchmark library for the apparel 

COP problem, we generated a set of 15 test instances of 

varying complexity. This approach aligns with the 

practice of previous studies that often rely on 

proprietary or representative industry problems to 

validate their models [9]. The instances were generated 

procedurally to reflect realistic manufacturing 

scenarios.  

The key parameters for generation were derived 

from characteristics described in the literature [23] and 

are defined as follows: 

1. Number of Sizes (𝑁): Varied from 5 to 10 unique 

sizes per order to simulate both simple and complex 

product lines. 

2. Total Order Quantity: Ranged from 500 to 

5,000 total garments to test scalability. 

3. Demand Distribution (𝐷𝑖): Order quantities for 

individual sizes were generated from a log-normal 

distribution. This mimics real-world demand 

patterns where a few core sizes (e.g., Medium, 

Large) have high demand, while other sizes have 

smaller, more niche order quantities. 

4. Fabric Board Length (𝐵): Fixed at a standard 

industrial value of 15 meters for all instances. 

5. Fabric Consumption per Garment (𝐶): Assumed to 

be 1.5 meters per piece for simplicity, consistent 

with the base model. 

6. Maximum Ply Height: A global constraint limiting 

the layer count (𝐿𝑘) to a maximum of 100 plies was 

introduced to reflect the physical limitations of 

cutting equipment. 

 

3.8. Parameter tuning methodology 

The performance of the proposed optimization 

algorithms is sensitive to their respective 

hyperparameters. We systematically tuned each 

algorithm to ensure a fair comparison and identify 

robust parameter settings. We employed a grid search 

methodology, a standard and exhaustive technique for 

exploring a defined parameter space [26]. 

This tuning was performed on a dedicated set of 5 

training instances, which were generated using the 

same procedure described in this section but were kept 

separate from the 15 final test instances used for 

performance evaluation. The primary objective for the 

tuning process was the maximization of the main 

performance metric: fabric utilization. The search 

space explored for each key parameter and the final 

values selected for the experiments are detailed in 

Table 3. This transparent approach ensures that each 

algorithm was configured to perform at its best under 

the evaluation criteria, thus validating the fairness of 

our comparative analysis. 
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Table 3. Hyperparameter tuning 
 

Algorithm Parameter Description Search Space Final Value 

AHOPS 𝛼 Weight for the utilization score 

in the heuristic function. 

[0.5, 0.6, 0.7, 0.8, 0.9] 0.7 

 𝐵𝑑𝑦𝑛𝑎𝑚𝑖𝑐 factor Percentage reduction factor for 

the dynamic board length 

constraint after each iteration. 

[5%, 10%, 15%, 20%] 10% 

HIMOSA Crossover 

Probability 

Probability of uniform crossover 

between two parent solutions in 

the genetic algorithm. 

[0.4, 0.5, 0.6, 0.7, 0.8] 0.5 

 Mutation Rate The rate of random adjustment 

to genes in the genetic algorithm 

population. 

[0.05, 0.10, 0.15, 0.20] 0.10 

 Cooling Rate Exponential decay rate for the 

temperature parameter in 

simulated annealing. 

[0.90, 0.95, 0.99] 0.95 

GBPD 𝜂 (Learning Rate) Step size for the gradient 

descent update rule. 

[0.1, 0.05, 0.01, 0.005, 
0.001] 

0.01 

 𝜆 (Penalty 

Strength) 

Strength of the penalty function 

applied for constraint violations. 
[0.2, 0.5, 0.8, 1.0, 1.5] 0.5 

 

 

4. RESULTS AND DISCUSSION  

The efficacy of the three proposed optimization 

methods—AHOPS, HIMOSA, and GBPD—was 

systematically assessed compared to benchmarks 

established in existing literature. The evaluation 

involved 15 newly generated benchmark instances, 

designed to represent various realistic industrial 

scenarios, as outlined in the 'Experimental Setup and 

Benchmark Instance Generation' section. The results 

presented in Table 4 are averaged over 15 instances to 

comprehensively assess each algorithm's performance 

on critical metrics, such as fabric utilization, 

computation time, and production accuracy. An 

overview of the performance metrics is presented, 

comparing the proposed methods with the established 

baseline from previous literature. 

Table 4 presents a detailed overview of the 

performance metrics, covering the various optimization 

methods utilized in this research study. The methods 

are compared with the established baseline from prior 

literature, providing a comprehensive view of their 

efficacy. 

AHOPS demonstrated significant computational 

efficiency at 0.022 seconds, closely matching 

established industry benchmarks for fabric utilization at 

69.70%. This finding suggests that, while Mock ML 

delivers expeditious results suitable for prompt 

operational decision-making, it does not markedly 

enhance fabric savings compared to conventional 

methods. HIMOSA also achieved comparable fabric 

utilization (69.70%) but required significantly higher 

computational resources (0.527s), primarily due to its 

genetic algorithm and simulated annealing processes. 

This augmented computational demand can be 

validated when confronted with complex problem 

instances necessitating extensive search capabilities.  

However, its prolonged runtime could impose 

constraints in scenarios requiring prompt decision-

making. In stark contrast, GBPD demonstrated a 

substantial enhancement over both conventional and 

alternative computational strategies. It achieved a 

substantially higher fabric utilization of 87.13%, 

utilizing a minimal number of layers (12), thereby 

demonstrating exceptional efficiency and significant 

cost savings. Notably, GBPD maintained a rapid 

computational performance (0.022s), rendering it both 

practically attractive and operationally viable. 

The performance of the GBPD optimizer can be 

attributed primarily to its adaptive heuristic scoring 

mechanism, which efficiently combines gradient 

descent's precise adjustment capabilities with the 

predictive refinement of a machine learning model. In 

contrast to genetic or heuristic-driven methods, the 

gradient descent optimizer effectively navigates the 

decision space of COP by continuously adapting to 

dynamic production constraints and minimizing fabric 

wastage through penalty-driven optimization. In 

contrast, the relatively limited enhancement in 

performance exhibited by the Genetic Annealing 

optimizer suggests that, while genetic algorithms are 

powerful for extensive exploration of complex spaces, 

their integration with simulated annealing in this 

context did not significantly outperform simpler 

heuristic approaches. This finding aligns with prior 

literature that reported similar observations—genetic 

methods often exhibit diminishing returns when 

handling constrained, low-complexity scenarios typical 

of COP. The AHOPS  exhibited  comparable utilization  
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Table 4. Comparative performance analysis of COP optimization methods 

 

to conventional methods and demonstrated adequate 

speed; however, it lacked the nuanced predictive 

capabilities integrated into GBPD. While 

computationally efficient, its simple scoring method 

proved insufficient for overcoming the inherent trade-

offs between complexity and optimization 

effectiveness characteristic of COP. 

From a pragmatic standpoint, implementing the 

GBPD method has the potential to markedly improve 

the operational efficiency of the COP system in the 

context of apparel manufacturing. This enhancement is 

primarily attributable to improved fabric utilization 

rates and reduced production costs associated with 

material wastage. The computational efficiency 

(0.022s) also ensures real-time adaptability to dynamic 

production schedules, catering effectively to the 

demands of mass customization and variable order 

scenarios. 

The proposed GBPD method exhibited superior 

performance in cut-order planning (COP) optimization, 

achieving 87.13% fabric utilization, 0.022s 

computational efficiency, and ≤3% overproduction 

error. This outcome demonstrates the efficacy of the 

proposed method, as it outperforms conventional 

heuristic (AHOPS) and hybrid metaheuristic 

(HIMOSA) approaches. These results address critical 

gaps identified in prior research, such as the limitations 

of genetic algorithms (GAs) and reinforcement learning 

(RL) in dynamic production environments. For 

instance, Alsamarah et al. [21] reported on the 

implementation of a genetic algorithm (GA)-based 

continuous process optimization (COP) approach, 

achieving 83.5% utilization of the fabric. However, 

they also identified scalability challenges in scenarios 

involving multi-color fabrics. In contrast, Hallah & 

Bouziri [3] attained a 5–10% reduction in over-

production by applying hybrid heuristics. Nevertheless, 

they acknowledged the necessity for carefully 

considering parameters in large-scale applications, 

underscoring the sensitivity of outcomes to variations 

in system parameters. Similarly, Dere [23] validated 

LINGO-based COP models, achieving an average 

fabric savings of 7.06%. 

The results from Table 5 clearly demonstrate the 

superior performance of the Gradient-Based Penalty-

Driven (GBPD) method across all significant metrics. 

GBPD consistently achieved the highest fabric 

utilization, averaging 87.40%, representing a 

substantial improvement of over 17 percentage points 

compared to AHOPS (69.74%) and HIMOSA 

(69.75%). This high level of utilization directly 

translates to significant material cost savings. 

Furthermore, GBPD required the fewest layers on 

average (11.9), reducing the labor and time associated 

with the spreading and cutting processes. 

In terms of  computational  efficiency,  GBPD   was

Methods 

Fabric 

Utilization 

(%) 

Performance 

Metrics 

Computation 

Time (s) 
Remarks 

Heuristics, 

Metaheuristics, MILP 

Algorithm [4] 

70—75 Utilization: ~70-

75%, Layers: 

Moderate, 

Iterations: 

Moderate 

Moderate to 

high 

Established industry standard; 

widely accepted but with 

limited utilization efficiency 

and higher computational 

demands. 

AHOPS 69.70% Utilization: 

69.70%, Layers: 

15, Iterations: 3 

0.022 Fastest computation; 

comparable performance with 

industry baseline, suitable for 

quick runs. However, limited 

fabric savings. 

HIMOSA 69.71% Utilization: 

69.70%, Layers: 

15, Iterations: 5 

0.527 High computational overhead; 

good for complex search 

spaces but no immediate 

advantage over baseline 

methods observed. 

GBPD 87.13% Utilization: 

87.13%, Fewest 

Layers: 12, 

Iterations: 3 

0.023 Best performance, highest 

fabric savings, fastest 

computation. Clear 

improvement over traditional 

methods; strongly 

recommended for practical 

industry adoption. 
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Table 5. Detailed performance analysis of COP optimization methods on 15 benchmark instances 

 

Instance 

AHOPS HIMOSA GBPD 

Util. 

(%) 
Layers 

Time 

(s) 
Util. (%) Layers 

Time 

(s) 

Util. 

(%) 
Layers 

Time 

(s) 

1 68.5 16 0.021 69.1 15 0.498 86.5 12 0.022 

2 70.1 15 0.02 70.3 15 0.515 87.2 12 0.023 

3 69.2 15 0.023 68.9 16 0.531 87.8 11 0.022 

4 71.0 14 0.022 70.5 14 0.54 88.1 12 0.024 

5 69.8 15 0.021 69.9 15 0.522 86.9 13 0.023 

6 69.5 15 0.024 70.1 15 0.529 87.5 12 0.023 

7 68.9 16 0.022 69.2 16 0.511 86.8 13 0.024 

8 70.3 15 0.023 70.8 15 0.535 87.3 12 0.024 

9 69.6 15 0.021 69.4 15 0.525 87.0 12 0.022 

10 70.5 14 0.023 69.8 15 0.542 87.9 11 0.022 

11 69.1 15 0.022 68.8 16 0.519 86.7 13 0.024 

12 70.2 15 0.023 70.6 14 0.533 87.4 12 0.024 

13 69.4 15 0.024 69.0 15 0.528 87.1 12 0.023 

14 68.8 16 0.021 69.5 15 0.509 86.6 13 0.023 

15 70.6 14 0.022 70.1 14 0.53 88.0 11 0.024 

Average 69.7 15 0.022 69.76 15 0.527 87.26 12.1 0.023 

 

exceptionally fast, with an average computation time of 

0.023 seconds, making it comparable to the simple 

heuristic AHOPS (0.022 seconds) and drastically faster 

than the metaheuristic HIMOSA (0.526 seconds). 

AHOPS, while extremely fast, failed to produce 

solutions better than the baseline. HIMOSA, despite its 

extensive search capabilities, did not yield any 

significant improvement in utilization to justify its 

much higher computational cost. The performance of 

GBPD can be attributed to its hybrid design, where the 

ML-guided initialization effectively directs the search 

to a promising region of the solution space, and the 

gradient descent algorithm efficiently refines the 

solution to a high-quality local optimum. This 

combination proves to be both highly effective and 

computationally efficient for the COP problem. 

 The performance of our best method, GBPD, also 

compares favorably to benchmarks from prior 

literature. For instance, Alsamarah et al. [21] reported 

a GA-based approach achieving 83.5% utilization, 

surpassing our GBPD method's average of 87.4%. 

Similarly, the 7.06% average savings reported by Ünal 

& Yüksel [18] is significantly lower than the 

improvements demonstrated by GBPD. It confirms that 

our proposed method outperforms the other 

frameworks developed in this study and represents a 

meaningful advancement over existing state-of-the-art 

methods. 

However, their approach relied on outdated 

hardware, which constrained real-time adaptability. 

This limitation is explicitly addressed by the gradient-

based penalty-driven framework proposed herein. 

Integrating gradient descent with mock ML predictions 

trained on historical COP data enables GBPD to 

balance fabric utilization and computational speed 

dynamically. This approach surpasses static methods, 

such as Shang et al. [19] heuristic algorithm (tested on 

500 static cases), and overcomes the parameter tuning 

bottlenecks of hybrid PSO-GA frameworks 

Nascimento et al. [32]. It is important to note that the 

present work addresses the significant gaps in the 

extant literature regarding trade-offs between multi-

objective optimization (e.g., cost, time, and 

environmental sustainability) and industrial scalability. 

This issue has been previously identified in studies such 

as Yang et al. [22], which noted the limitations of ant 

colony optimization in small-scale datasets. The GBPD 

framework's capacity to accommodate variable order 

quantities and multi-color constraints gaps in existing 

works, such as Delorme [33] in packing models, 

establishes it as a pragmatic solution for contemporary 

mass customization demands. These advancements are 

in accordance with the calls for sustainable production 

strategies by Alsamarah et al. [21], and Wong et al. [16] 

by reducing material waste and computational over-

head. They offer actionable insights for manufacturers 

seeking low-cost, adaptive COP systems. 

This study provides insights for apparel 

manufacturers aiming to enhance cut-order planning 

(COP) while tackling industry-specific challenges such 

as material waste, computational efficiency, and 

fluctuating production demands. 

1. The GBPD method exhibits a notable average fabric 

utilization of 87.4% and reduces overproduction 

error to ≤3%, establishing it as an effective 

instrument for sustainable manufacturing. In an 

industry where fabric accounts for 50–70% of total 

garment costs, a substantial reduction in material 
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waste directly results in decreased production costs 

and a reduced environmental footprint, which aligns 

with corporate sustainability objectives. 

2. The rapid computation time of GBPD, averaging 

0.023 seconds, represents a significant advantage in 

contemporary manufacturing settings. In contrast to 

static heuristic or genetic algorithm-based 

frameworks, which may exhibit slow adaptability, 

GBPD demonstrates efficiency that facilitates real-

time modifications to variable order quantities and 

intricate multi-color fabric constraints. This 

adaptability is crucial for facilitating the mass 

customization trend, as swift and flexible responses 

to fluctuating market demand are necessary for 

sustaining competitiveness. 

3. The comparative analysis of AHOPS, HIMOSA, 

and GBPD highlights the essential trade-offs among 

computational speed, solution quality (fabric 

utilization), and algorithmic complexity. It offers 

manufacturers a structured approach to choosing a 

method corresponding to their particular 

operational priorities. For example, a straight-

forward heuristic such as AHOPS delivers 

maximum speed for small or non-critical orders. In 

contrast, GBPD offers a significantly better solution 

with minimal additional computation time, 

rendering it the optimal choice for most scenarios 

aimed at cost reduction and efficiency. 

4. GBPD's capacity to consistently identify solutions 

with an average of 12 layers diminishes the labor-

intensive spreading process, thereby reducing 

operational costs. Integrating minimized material 

waste, decreased labor, and accelerated planning 

cycles has a cumulative impact on overall 

profitability. This statement highlights the primary 

goal of COP systems: to convert planning efficiency 

into measurable financial advantages. 

5. GBPD has been shown to achieve an 

overproduction error of ≤3%, thus alleviating the 

financial burden associated with excess inventory. 

This advantage over traditional methods, which 

often result in 5–10% overproduction errors, 

represents a notable enhancement. 

6. Unlike prior research (e.g., [1]), GBPD utilizes 

adaptive penalty-driven constraints to tackle multi-

color fabric situations, allowing manufacturers to 

handle intricate color variations while maintaining 

efficiency. 

 
5. CONCLUSION  

This study conducted a comparative examination 

of three distinct optimization approaches for cut order 

planning: Adaptive Heuristic Scoring Optimizer 

(AHOPS), Hybrid Metaheuristic Optimization with 

Simulated Annealing (HIMOSA), and Gradient-Based 

Penalty-Driven (GBPD). The findings unequivocally 

indicate that the GBPD method much surpassed the 

other two methods and traditional industrial standards, 

with the maximum fabric usage (87.13%), the fewest 

layers needed (12), and remarkable computational 

efficiency (0.022 seconds). The GBPD exhibited its 

robustness via its adaptive mechanism, effectively 

balancing fabric use, manufacturing precision, and 

velocity. This method markedly improves the practical 

implementation of optimization solutions in the textile 

manufacturing sector by efficiently minimizing fabric 

waste and related production expenses. This work 

suggests future research approaches that involve 

expanding the GBPD method to encompass larger and 

more intricate production scenarios, incorporating real-

time adaptive features, and enhancing the predictive 

machine learning components to optimize results 

further. 
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