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This study seeks to address the complicated optimization challenge inherent in cut
order planning (COP) in the clothing manufacturing business, emphasising fabric
consumption, computational economy, and production accuracy. Three optimization
approaches were compared: adaptive heuristic scoring optimizer (AHOPS), hybrid
metaheuristic optimization with simulated annealing (HIMOSA), and gradient-
based penalty-driven (GBPD). The results show that the GBPD method achieved the
highest fabric utilization (87.13%), the fewest amount of fabric layers (12), and the
maximum computational efficiency (0.022 seconds), significantly outperforming
both conventional methods and alternative advanced approaches. AHOPS and
HIMOSA, on the other hand, required more layers (15) and produced lower fabric
utilization (around 69.70%), with HIMOSA demonstrating noticeably greater
computational needs (0.527 seconds). The adaptive heuristic scoring mechanism and
the combination of gradient descent and machine learning predictions, which
successfully handled the combinatorial difficulties of COP, are responsible for
GBPD's exceptional performance. These results offer useful information to
manufacturers looking for scalable, effective optimization solutions. They also point
to potential avenues for future research, such as extending the applicability of GBPD
to more intricate production scenarios and further honing machine learning models
for increased efficiency and adaptability.
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1. INTRODUCTION
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reduction—three major competitive factors in the low-

In the textile manufacturing industry, cut order
planning (COP) is a crucial optimization problem that
aims to reduce overall production costs by identifying
effective  fabric roll cutting techniques [1].
Fundamentally, COP entails producing ideal layer
counts (number of fabric layers cut concurrently) and
cutting ratios (number of garment pieces per size in a
single fabric layer) while respecting limitations like
fabric board length, consumption per garment, and
order quantities [2]. The immediate effects of COP on
labor efficiency, cost savings, and material waste

margin garment sector—mabke its resolution urgent [3].
Fabric accounts for between 50 and 70 percent of the
overall cost of a garment in a typical garment
manufacturing process. Therefore, it is essential to
optimize the cutting strategy. The necessity of figuring
out the mix of markers (fabric patterns) and their lay
counts to guarantee thorough coverage of all sizes and
quantities requested by an order highlights the
importance of this optimization [4].

The challenge of optimizing COP is rooted in its
inherent computational complexity. The problem is a
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form of combinatorial optimization widely recognized
in operations research as being NP-hard. This
classification means that as the number of garment
sizes, order quantities, and production constraints
increases, the time required to find a guaranteed
optimal solution grows exponentially, rendering exact
methods computationally intractable for most real-
world, industrial-scale scenarios. The COP problem
shares characteristics with other classic NP-hard
problems, such as the bin packing problem (BPP) and
the cutting stock problem (CSP), where the goal is to fit
a set of items into a minimum number of containers or
to cut stock material to fulfill orders with minimal
waste. Consequently, the development and analysis of
efficient heuristics and metaheuristics are not merely
beneficial but essential for providing practical, near-
optimal solutions in a reasonable timeframe, thereby
justifying the focus of this study.

Manual marker-making and rule-based heuristics
(e.g., prioritizing high-demand sizes) are examples of
conventional approaches that struggle with the
combinatorial complexity and dynamic restrictions of
COP. For example, fixed-pattern methods are unable to
adjust to changes in cloth width or varied order
numbers. Resulting in uneven production and less-
than-ideal utilization. Furthermore, these difficulties
are made worse by contemporary expectations for mass
customization, since conventional techniques are
ineffective in managing large variety in size
distributions [5]. In order to solve the cutting path
problem in laser cutting applications, the study Zhang
et al. [6] creates a variable neighborhood search for the
node routing method and a two-step heuristic for the arc
routing method. This results in near-optimal solutions
with GAPs frequently below 0.5% and computation
times under one second for small to medium instances,
guaranteeing effective cutting paths and high-quality
piece separation. For example, innovative software
solutions for cutting planning have demonstrated im-
proved scalability and adaptability to dynamic pro-
duction requirements, achieving up to 80% reductions
in solving time compared to conventional methods [7].

The absence of interaction with real-world
production limitations (such as tool preheating and
dynamic layout adjustments) and the scalability
problems of accurate approaches like CPLEX for large-
scale instances, however, limit the approach and point
to a research gap. In order to address the marker
planning problem in the apparel industry, the study
Tsao et al. [8] presents hybrid PSO-based heuristics
(PSO-GA, PSO-SA, and SA-PSO). These heuristics
achieve robust performance across various order
configurations and reduce fabric length by
approximately 5-6% when compared to the baseline
moving heuristic, and in certain cases, up to 15% when
compared to the benchmark bottom-left fill approach.
Further research on scalability and real-time
applications in various industrial contexts is necessary,

as the suggested approaches are sensitive to parameter
settings and incur higher computing times, particularly
in hybrid variations. In contrast to traditional and
learning-based baselines, the study Wang et al. [9]
suggests a hierarchical sequence model (HEM) that
dramatically increases the efficiency of solving mixed-
integer linear programming (MILPs), attaining up to an
80% decrease in solving time. Recent studies have
demonstrated the efficacy of reinforcement learning
(RL) as a promising tool. Research has shown that RL
can reduce cutting path lengths by approximately
2.95%, while simultaneously reducing computation
time by up to 96.75% [10]. These findings are attributed
to the adaptive sequence adjustment and attention
mechanisms that characterize the RL framework [10].

However, this method has shortcomings in terms
of computational complexity caused by the hierarchical
reinforcement learning architecture and difficulty in
generalizing across various types of MILPs that were
not seen during training. Emerging machine learning
techniques for selecting cutting domains in mixed-
integer linear programming (MILP) emphasize ML-
based strategies to improve solver processing time [11].
For example, the hierarchical order model (HEM) can
improve processing time by 16.4%. However, this
model has drawbacks regarding computational costs for
training complex machine learning models and
challenges in applying the obtained tactics to various
MILP instances and solver settings. The hierarchical
sequence/set model (HEM) for selecting cutting planes
in MILP has been proven to have better processing time
than state-of-the-art techniques across various MILP
benchmarks [12]. It presents a hierarchical
sequence/set model (HEM). However, its limitations
include the computational complexity of training
complex hierarchical models and potential challenges
in applying the acquired cut-selection techniques to
different MILP problems. Additionally, optimizing
continuous optimization processes (COPs) still relies
heavily on genetic algorithms (GAs). It has been
demonstrated that well-established GA techniques
outperform heuristic-based commercial tools in terms
of size ratio optimization. However, the scalability of
GAs remains constrained in the context of complex
problem instances [13].

In order to optimize cut order plan (COP) solutions
in the garment manufacturing industry, the study
Abeysooriya & Fernando [14] presents a canonical
genetic algorithm (CGA). It shows greater economic
efficiency than heuristic-based commercial software
and achieves noticeably better size ratio optimization.
However, the method has drawbacks, such as a
decreased ability to solve more complicated COP
issues because it requires larger populations and many
generations to produce high-quality answers.
Compared to conventional methods, the study by Junior
et al. [15] offers a reinforcement learning approach for
cutting path planning that integrates adaptive sequence
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adjustment and attention mechanisms, leading to
notable improvements in computation time of up to
96.75% and path length reduction of about 2.95%. Its
drawbacks include somewhat worse performance on
fixed-length node scenarios than specialized deep
reinforcement learning techniques, suggesting possible
difficulties striking a balance between flexibility and
optimization precision. Evolutionary algorithms,
including adaptive biased random-key genetic
algorithms (ABRKGA), have been employed in line-
cutting path planning (LCPP). This application has
yielded enhanced convergence rates and practical
applicability in industrial settings [15].

Even though COP solutions have been improved
by previous research using heuristics, metaheuristics,
and machine learning, there are still significant gaps in
scalability, computational efficiency, and adaptation to
changing production limitations. A systematic
comparison of optimization frameworks suited to
COP's multi-objective nature—specifically, striking a
balance between fabric utilization, iteration count, and
production accuracy—is conspicuously lacking from
previous work, which concentrates on discrete
algorithmic improvements (such as genetic algorithms,
reinforcement learning, or hybrid models). In order to
fill this gap, this work compares and contrasts three
approaches—Mock ML, Genetic Annealing, and
Gradient Descent—to see which is better at managing
the combinatorial complexity of COP. This work
focuses on real-world applications by combining
gradient-based penalties, metaheuristic search, and
heuristic scoring. Its goal is to give manufacturers
actionable insights that limit overproduction (<3%
mistake) while retaining >85% fabric utilization. This
study is crucial because the clothing industry urgently
needs Low-cost, flexible COP systems that respond to
changing demand patterns and mass customization
tendencies [16].

While the literature contains numerous
optimization approaches for COP, including genetic
algorithms, reinforcement learning, and mixed-integer
linear programming, a systematic comparison of
fundamentally different optimization philosophies
applied to this problem is lacking. This study aims to
fill this gap by evaluating three distinct algorithmic
paradigms chosen to represent a spectrum of
optimization strategies. We selected: (1) an advanced
heuristic (AHOPS), representing a fast, rule-based yet
adaptive approach suitable for rapid decision-making;
(2) a hybrid metaheuristic (HIMOSA), representing a
powerful stochastic search method that combines the
global exploration of GAs with the local refinement of
SA, a common and robust strategy for complex
combinatorial problems; and (3) a gradient-based
method (GBPD), representing a deterministic,
calculus-based approach that is novelly enhanced with
machine learning. This comparative structure allows

for a comprehensive analysis of the trade-offs between
heuristic speed, metaheuristic robustness, and the
precision of gradient-based optimization in the specific
context of COP.
The primary contributions of this research are
delineated as follows:
1) Development of a Comparative Framework for
COP Optimization. This study introduces a
systematic comparison of three optimization

methodologies—Adaptive ~ Heuristic =~ Scoring
Optimizer (AHOPS), Hybrid Metaheuristic
Optimization ~ with Simulated  Annealing

(HIMOSA), and Gradient-Based Penalty-Driven
(GBPD)—to address cut-order planning (COP) in

apparel manufacturing, focusing on fabric
utilization,  computational  efficiency, and
production accuracy.

a. The Adaptive Heuristic Scoring Optimizer

(AHOPS) introduces a novel heuristic framework
whose primary innovation lies in its dynamic
constraint adaptation and a scoring mechanism that
explicitly incorporates residual demand awareness.
Unlike traditional heuristics for COP that rely on
static rules, AHOPS simulates an ML-driven
approach by iteratively prioritizing size ratios that
address the most pressing remaining order
quantities, thereby adapting its search focus
throughout the optimization process.

b. The Hybrid Metaheuristic Optimization with
Simulated Annealing (HIMOSA) framework
contributes a tailored integration of a genetic
algorithm (GA) with simulated annealing (SA)
specifically for the COP domain. Its novelty is not
in the hybridization itself, but in the design of its
problem-specific fitness function, which penalizes
overly complex patterns (i.e., those with an
excessive number of unique sizes), and its use of an
adaptive exponential cooling schedule (T =T_o -
0.95k). This architecture ensures a robust balance
between the broad, global exploration characteristic
of GAs and the practical need for implementable,

low-complexity solutions in a manufacturing
setting.
c. The Gradient-Based Penalty-Driven (GBPD)

method represents the most significant novel
contribution of this work. It proposes a unique
fusion of classical gradient descent optimization
with a mock Machine Learning (ML) model.
Specifically, the ML model, trained on historical
COP data, provides a high-quality initial seed for
the size ratios, drastically accelerating convergence
towards promising regions of the solution space.
The gradient descent technique then improves these
ratios, and a proportional penalty function
dynamically limits fabric and demand. This
innovative way to solve the COP problem combines
ML-guided initialization with penalty-driven
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gradient refinement. It differentiates it from purely
learning-based solutions and typical mathematical
programming techniques.

d. Combining machine learning predictions with
gradient-based optimization. The suggested GBPD
method uses fake ML models, gradient descent, and
penalty-driven limitations to change how it works
based on past COP data.

e. Addressing Real-World Industrial Constraints. The
study underscores the importance of scalability and
adaptability in dynamic production settings,
including fluctuating order quantities and multi-
color fabric limitations, which represent significant
deficiencies in current COP frameworks such as
genetic algorithms or reinforcement learning.

f. Framework for Evaluating COP Methods Under
Multi-Objective Trade-off Demons. By balancing
competing metrics (fabric utilization, iteration
count, and production accuracy), this work provides
actionable insights for manufacturers to adopt low-
cost, adaptive COP systems aligned with mass
customization trends and volatile demand patterns.

g. Rigorous Experimental Validation on Generated
Benchmarks. This research establishes a
methodology for generating realistic benchmark
instances and provides a detailed, per-instance
performance analysis, addressing a critical gap in
experimental standardization within COP literature.
By evaluating the methods on metrics of fabric
utilization, layer count, and computational time, it
offers a robust framework for evaluating COP
solutions under multi-objective trade-offs.

The structure of this paper is as follows: Section 2
reviews related works on COP optimization, Section 3
details the methodology and algorithmic frameworks,
Section 4 presents results and comparative analysis,
and Section 5 discusses implications, limitations, and
future directions.

2. RELATED WORK

Recent advancements in COP optimization have
significantly = improved fabric utilization and
computational efficiency. However, critical limitations
persist. For instance, hybrid particle swarm
optimization (PSO)-based heuristics (e.g., PSO-GA,
PSO-SA) have achieved 5—6% fabric length reductions
over baseline methods. In some cases, these variants
have been observed to reduce layouts by up to 15%
compared to traditional bottom-left fill approaches.
Nevertheless, the efficacy of these methodologies was
found to be contingent upon parameter tuning and
elevated computational overhead in hybrid variants.
This limitation renders their real-time applicability in
dynamic production environments impractical [4].

Genetic algorithms (GA) and hybrid meta-
heuristic approaches (e.g., GA combined with
simulated annealing or tabu search) are the most
effective for optimizing cut order planning (COP) in

apparel manufacturing. These approaches have been
shown to reduce fabric waste (e.g., up to 15% savings
in some cases). However, the review identifies several
gaps, including a limited focus on cost and time
parameters, reliance on outdated hardware in
experimental setups, and underexplored potential for
newer meta-heuristics (e.g., galactic swarm
optimization) and Al-driven techniques to enhance
COP solutions [17].

The study demonstrates that LINGO-based
optimization achieves significant fabric savings (7.06%
average efficiency improvement, with individual cases
like shirts showing up to 12.42% savings) through
mixed-integer nonlinear programming, outperforming
manual cut order planning methods. However, it
exhibits a lack of scalability to meet the dynamic
demands of production. Furthermore, it does not
address multi-color fabric constraints or real-time
adaptability, which limits its industrial applicability
compared to modern metaheuristic frameworks, such
as genetic algorithms or reinforcement learning [18].

The study demonstrates that a novel software
approach for cut order planning can achieve optimized
fabric utilization (via parameters like total length,
layers, and utility coefficients) and reduce waste in
apparel manufacturing. These findings were validated
through simulations and real-world testing on coat
production. However, their work, similar to other
specific software solutions, lacks a broader discussion
on scalability for dynamic production demands,
integration with existing CAD systems, and real-time
adaptability to constraints such as multi-color fabrics,
which are areas where modern metaheuristic or Al-
driven frameworks may offer advantage [7].

The study introduces a heuristic algorithm (HFSC)
for fabric spreading and cutting in apparel
manufacturing. This algorithm effectively minimizes
cutting bed wusage while meeting production
requirements through a constructive procedure and
iterative optimization loop. These conclusions were
validated via 500 test cases. However, the study focuses
on static production scenarios, neglecting to address
dynamic constraints such as real-time order
modifications or integrating multiple colors into fabric.
Furthermore, its computational efficiency has not been
assessed compared to current metaheuristic frame-
works, such as genetic algorithms and reinforcement
learning [19].

This research illustrates that combining genetic
algorithm (GA)-based sizing optimization with an
integer programming (IP) model for cut order planning
enhances garment fit and cost efficiency. This
integration  establishes a  balance  between
personalization and production costs by examining case
studies on skirt production. The proposed framework
has been validated exclusively on a basic straight skirt
case study, limiting its applicability to more complex
garment types or dynamic multicolored fabric
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situations. Additionally, it does not account for real-
time adaptability or scalability in large-scale industrial
applications [20].

This study illustrates that a genetic algorithm
(GA)-based method for cut order planning (COP)
minimizes fabric waste, markers, and layers in garment
production. This method realizes cost reductions by
employing optimized cutting plans, which are
confirmed through comparative analysis with heuristic
techniques. However, the study concentrates on static
production scenarios with fixed marker dimensions. It
does not address dynamic order changes, multi-color
fabric constraints, or scalability for large-scale
industrial applications. Such limitations are common in
GA-driven COP frameworks [21].

The study demonstrated that integrating cut order
planning (COP) and marker layout optimization (TDL)
into a unified model (CT) using heuristics and
metaheuristics (e.g., genetic algorithms, simulated
annealing) achieves more accurate fabric length
estimation (reducing overproduction by 5-10%)
compared to traditional fixed-layout approaches. These
findings were validated through seven industrial case
studies. However, the model assumes static demand
and uniform pattern counts across sections. Also, the
model does not address scalability challenges in large-
scale applications, and the model does not address
dynamic order adjustments or multi-color fabric
constraints, which are critical for modern mass
customization scenarios [3].

Table 1. Literature review on COP

Author Year Method Findings Limitations
Yangetal. 2011  Antcolony optimization Competitive with integer Tested on small-scale data;
[22] (ACIP) programming (IP); assumes static labor costs
validated via Lingo 8.0 and stack characteristics
simulations for stencil
setup cost

M’Hallah & 2016 Integrated COP and Reduced overproduction Assumed static demand

Bougziri [3] marker layout optimization by 5-10% compared to and uniform pattern
(CT) using heuristics, fixed-layout approaches counts; scalability
simulated annealing (SA), challenges in large-scale
and genetic algorithms applications
(GA)

Shang et al. 2019  Heuristic algorithm Focused on static

[19] (HFSC) with constructive  Achieved effective and production scenarios; no
procedure and iterative efficient results in 500 test ~ real-time adaptability or
optimization loop cases; minimized cutting multi-color fabric

bed usage integration.

Dere [23] 2020 Lacks scalability for
LINGO-based mixed- 7.06% average fabric dynamic demands
integer nonlinear efficiency improvement
programming (up to 12.42% for shirts)

Alsamarah 2021  Genetic algorithm (GA)- Improved fabric utilization ~ Focused on static

etal. [21] based COP from 80.88% to 83.5%; production scenarios; no

reduced markers from 6 to  multi-color fabric
3 constraints addressed
This Study - Comparative analysis of The proposed GBPD The mock ML model in

AHOPS (heuristic),
HIMOSA (metaheuristic),
and GBPD (ML-seeded
gradient-based).

method significantly
outperforms prior
methods, achieving
87.13% fabric utilization
with only 12 layers and
near-instant computation
(0.023s). It provides a
scalable solution that
addresses real-world
constraints.

GBPD is based on
historical data;
performance on entirely
new production types
requires further validation.
The study focuses on
fabric utilization and
computational time; a
multi-objective cost model
including labor could be a
future extension.
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The study demonstrates that an ant colony
optimization approach (ACIP) effectively addresses
layout problems in the fashion industry, achieving
competitive  solutions compared to integer
programming (IP) and validating robustness through
Lingo 8.0 simulations, particularly optimizing stencil
setup costs for large-scale datasets. However, the study
is constrained by its reliance on small-scale data testing
and assumption of static labor costs and stack
characteristics. These limitations preclude the study's
ability to generalize to dynamic, real-world industrial
settings, where rapid adjustments to variable
constraints (e.g., fabric types, order changes) are
imperative [22]. The following table in Table 1 offers a
comparative analysis of the reviewed papers on cut-
order planning (COP) and related optimization methods
in apparel manufacturing.

3. RESEARCH METHODS
3.1. COP

One essential step in clothing production is cut
order planning, or COP. Figuring out the best way to
cut fabric to fit customer requests guarantees effective
production while lowering total expenses. A scheduling
technique called COP is applied in manufacturing
settings that prioritize order. A list of pending orders is
compiled, and the orders that should be processed
within a given time frame are chosen. Setting ply height
and spread length directly impacts cutting efficiency
and costs, sectioning determines the number of sections
and the distribution of garment sizes, and grouping
orders optimizes fabric usage and lowers setup costs.
These crucial decisions are what drive the COP process.
By balancing fabric costs (based on total fabric length),
spreading labor costs (influenced by ply height and
spread length), cutting costs (related to pattern piece
perimeter length and cutting speed), and any additional

List of Pending Orders

Y

costs related to making new markers, the main
objective is to minimize total cutting costs.

Fig. 1 depicts the general process of COP,
including the essential stages from order entry to the
cutting room. The primary goal is to reduce total cutting
costs by balancing fabric costs (based on total fabric
length), spreading labor costs (affected by ply height
and spread length), cutting costs (depending on pattern
piece perimeter length and cutting speed), and any
additional costs associated with creating new markers.
The procedure must follow spreading guidelines such
as maximum ply height and cutting table length.
Finally, COP produces a thorough plan outlining the
distribution of garment sizes within sections, marker
efficiency, and cutting cost per garment, which is
subsequently used in the marker-making process to
create precise cutting layouts. The resulting bundles of
cut pieces are then sent to the assembly system based
on operational priorities, ensuring maximum fabric
utilization while minimizing costs for a more
responsive and competitive garment production
process [24].

3.2. Optimization in COP

Because of the wide range of sizes and erratic order
numbers, optimization models in COP are necessary for
mass customisation of clothing. Yan-mei et al. [26]
suggested that one method reduces the number of
cutting tables required by rapidly generating effective
cutting plans using a probability search algorithm.
Important limitations on this procedure include the
cutting capacity of the table, the maximum number of
layers that may be layered on each cutting table, and the
requirement to satisfy demand for every size of
garment. The goal is to meet all customer and
production needs while reducing the overall number of
cutting tables.

Decision: Which order(s) should be
processed this time period?

Determine:

Number of sections

Spreading labor, and
Marker Making impact

CUT ORDER PLANNING

Which orders to cut together
Which sizes in each section

Section ply height & length
Minimize Costs: Fabric, Cutting &

Subject to: Spreading restrictions

MARKER MAKING

y
CUTTING ROOM

Fig. 1. General process of COP [24]

84

d | http:/dx.doi.org/10.30656/jsmi.v9i2.10502


http://dx.doi.org/10.30656/jsmi.v9i2.10502

Jurnal Sistem dan Manajemen Industri Vol 9 No 2 December, 2025, 79-93

Table 2. Apparel order for mass customization in

COP [25]
Size 1 2 I | e M
Number Y 1 Y2 ... Y. Y m

Table 2 shows factors such as the number of layers
per table (X_j) and the number of pieces per garment
size per table (a_ij) are defined to ensure production
efficiency and demand fulfillment. The optimization
process entails randomly generating initial solutions
based on production constraints, then using the
probability search algorithm to find the optimal size
combination plan that minimizes overproduction and
fabric waste, and finally refining the solution through
iterative adjustments to balance production capacity
with demand, thereby improving fabric utilization and
lowering labor costs [25].

3.3. Problem formulation

The COP problem is formulated as a constrained
optimization problem aiming to minimize total fabric
consumption while satisfying all production demands
and physical constraints. Let i be the index for garment
sizes, ranging from 1 to N, where N is the total number
of unique sizes in an order. Let k be the index for
cutting iterations (or distinct marker patterns), ranging
from 1 to K, where K is the total number of iterations
required to fulfilll the order. The key parameters and
decision variables are defined as follows:
e  Parameters:

D_i: The total quantity demanded for size i.

B : The maximum fabric board length available for

a single marker.

C : The fabric consumption (length) per garment

piece (assumed constant across sizes for this

model).
e Decision Variables:

Let L_k: Number of layers in iteration k.

Let r_ik: Ratio of size i in iteration k.

The mathematical term is defined as follows:
a) Objective Function

The objective remains to minimize total fabric

consumption.

Minimize total fabric consumption:

K N
ZLR-<ZrL-k-C> (1)
k=1 i=1
where C is the amount of fabric used per garment
and K is the total number of iterations [26].
b) Constraints
1. Fabric Length Constraint:
This constraint ensures that the length of any
single marker does not exceed the available

board length.

N

Zr"" “C<B Vke{12,..,K} (2)

i=1
where B is the fabric board length [2, 17].

2. Demand Fulfilllment:
The demand fulfilllment constraint has been
used to ensure that for each size i, the sum of
pieces produced across all K iterations (where
the number of pieces in iteration k is the layer
count L_k multiplied by the size ratio r_ik) is
greater than or equal to the demand D _i.

K
Z L' =D; Vie{l2..,N} ()
i=1

where D_i is the ordered quantity for size i
[16, 17].
3. Non-negativity and Integrality:
Lk>0
r_ik =0 )
This formulation is consistent with previous
resecarch on COP's mixed-integer programming
foundations, while stressing scalability and real-world
constraints (such as ply limitations) [2].

3.4. Adaptive heuristic scoring optimizer (AHOPS)

The Adaptive Heuristic Scoring Optimizer
(AHOPS) is a novel framework designed to tackle the
combinatorial complexity inherent in Cut Order
Planning (COP). It employs a hybrid methodology
integrating systematic ratio enumeration, dynamic

constraint  adaptation, and heuristic  scoring
mechanisms. This method enhances standard
descriptive research paradigms by integrating

exploratory pattern analysis with optimization-focused
decision-making, leading to adaptive solutions tailored
to residual demand dynamics.

The initial phase of AHOPS involves generating
all feasible size ratios (7;;) that comply with the fabric
length constraint. Recursive combinatorial search
facilitates brute-force enumeration by systematically
examining all possible combinations, ensuring that no
potentially promising patterns are overlooked. AHOPS
employs a gradual tightening technique for the fabric
length constraint to prioritize high-utilization patterns
at the outset. The algorithm is prompted to explore
denser ratios in subsequent iterations by decreasing the
allowable board length (B gynamic) by a specified factor
(e.g., 10-20%) following each iteration [27]. This
adaptive technique dynamically narrows the search
space based on patterns of residual demand, aligning
with the principles of descriptive research.

A weighted scoring system that strikes a balance
between two goals is used to evaluate ratios:

1. Fabric Utilization:
Us = it C )

denamic
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where US is the utilization score, measuring how
effectively the pattern uses available fabric.
2. Demand Coverage:
s = YLy mif;(Lk '.rik'Di) ©)
iz D_i

where CS is the coverage score, which measures

progress toward fulfilling order quantities [28].

The composite score is calculated as follows:

Score=a-US+(1—a)-CS @)
where demand fulfillment is ensured while
utilization is prioritized by a = 0.7, this dual-
objective formulation addresses the inherent trade-
offs between accuracy and efficiency in COP.

AHOPS simulates machine learning (ML)-driven
decision-making by including residual demand
awareness in the scoring process. Patterns that
disproportionately lower high-remaining demand sizes
(e.g., S/S or L/S in early iterations) get a score increase,
similar to how ML models prioritize essential features.
This technique promotes convergence toward balanced
production.

The AHOPS workflow operates iteratively, as seen
in Fig. 2. The algorithm starts by producing all
conceivable size ratios (ry,) that satisfy the fabric
length requirement (13, - C < B) to ensure no viable
pattern is overlooked.

Algorithm 1 Adaptive Heuristic Scoring Optimizer (AHOPS)
Require: Sizes (S), Orders (0), Board Length (B), Consumption (C), x= 0.7
Ensure: Optimal cutting plan with iterations K.
L. Baynamic < B
2. Ke«#0
3. whileYD > 0do
4 R « GenerateRatios (S, Bgynamic, C) & Bruto — force ratio enumeration
(51

ForallreR do

© Initialize dynamic board length
© Initialize iteration list
© Continue until all demands are fulfilled

w

6. L « min ([lﬁ]) © Calculate max layers without overproduction
Ti
7. Ue Enc o Utization score
Baynamic
8. V « Zmindred; & Demand coverage score
i
9. Score (1) « aU + (1 — a)V & Composite score function
10. End for
11. T* & arg max,.g score (r) o Select optimal ratio
12. L« min ([2])
i
13. Update D < D — L* xr* & Reduce remaining demand
14. K <K u{(L,r)} © Record iteration details
15. Baynamic < 0.9 * Baynamic © progressive constraint tightening
16. end while
17.  return K

Fig. 2 Algorithm for the AHOPS method

To emphasize high-utilization patterns, AHOPS
dynamically tightens the permitted board length
(Baynamic) After each iteration, gradually reduce it by
a predetermined factor (e.g., 10%) to encourage denser
ratios in subsequent stages. To coincide with COP's
efficiency aims, each ratio is evaluated using a
weighted scoring system that balances fabric utilization
X7k - C/Baynamic) and  demand  coverage
QG min(Ly -1y, D;) / ¥D;). The bias (a = 0.7)
favors utilization. The top-scoring ratio is chosen, and
layers (Lk) are calculated to avoid overproduction. The
residual demand (Di) is then updated, and constraints
are tightened iteratively. This approach replicates

machine learning-driven  decision-making  via

prioritizing. Patterns that accelerate the convergence

toward balanced output by disproportionately reducing

high-remaining demand sizes.

3.5. Hybrid metaheuristic optimization with
simulated annealing (HIMOSA)

The Hybrid Metaheuristic Optimization with
Simulated Annealing (HIMOSA) technique combines
genetic algorithm (GA) evolution with simulated
annealing (SA) to navigate COP's combinatorial
solution space while balancing exploration and
exploitation. This method builds on previous work on
hybrid metaheuristics by using adaptive cooling
schedules and problem-specific fitness functions suited
to fabric utilization and demand coverage [29].

The HIMOSA workflow operates iteratively, as
seen in Fig. 3. Using Latin Hypercube Sampling, the
method generates a diversified population of size ratios,
ensuring a wide range of feasible solutions. Genetic
operators, such as uniform crossover (50% gene
inheritance probability) and mutation (10% adjustment
rate), evolve ratios within fabric limitations (X713 -
C < B). Simulated annealing uses a temperature
parameter (T) that decays exponentially (T = T, -
0.95%), allowing for the acceptance of inferior
solutions to avoid local optima. A problem-specific
fitness function evaluates solutions by integrating
fabric usage (3.1, - C/B) with a penalty for complex
patterns (e.g., ratios using > 60% of sizes), resulting in
practical, high-coverage solutions. This hybrid
technique combines GA's global search capabilities
with SA's local refining to address COP's scalability
issues while retaining solution quality [30].

Algorithm 2 Hybrid Metaheuristic Optimization with Simulated Annealing (HIMOSA)

Require: Sizes (S), Orders (0), Board Length (B), Consumption (C), T, = 1000,
cooling_rate=0.95, population_size=50
Ensure: Optimal cutting plan with iterations K.
P « InitializePopulation(S, population_size)s Latin Hypercube Sampling
T«T,
K<o6
while do T > 0.1 and generations I 100 do
Forallr € P do
L « min ([%])
U« Lric & Utization score

B
- 04

& Termination criteria

® N kLN

nonzero (r)

Pe1=-175
Fitness (r) « U * P
End for
Pyarents < TournamentSelect (P,5)
Posrspring < Crossover (Pyarents) 5)
Posrspring < Mutate (Posrspring, 5)
For all 10, € Porrepring 0
AE « fitness (They) — fitness (roq)
if AE>0orrand () < e’Ag then
replace 74 With 7y,
end if
end for
T « T % cooling_rate
K « K U {Best (1)}
end while
return K

© pattern complexity penalty

—— 0
e

© Parent selection

[

& Uniform crossover

w

© Mutation rate

T

Pl

© SA acceptance

o = —
S v

= Exponential decay
© Record iteration

RSN
w =

Fig. 3 Algorithm for the HIMOSA method

3.6. Gradient-based penalty-driven (GBPD)
The Gradient-Based Penalty-Driven (GBPD)

86

d | http:/dx.doi.org/10.30656/jsmi.v9i2.10502


http://dx.doi.org/10.30656/jsmi.v9i2.10502

Jurnal Sistem dan Manajemen Industri Vol 9 No 2 December, 2025, 79-93

employs gradient descent and proportional penalty
mechanisms to iteratively refine size ratios and layer
counts, addressing COP’s multi-objective trade-offs
between fabric utilization and production accuracy.
This method extends gradient-based frameworks by
integrating dynamic penalty functions that enforce
adherence to fabric constraints and demand fulfillment
[31].

Central to GBPD is its gradient update rule, which
modifies ratios using partial derivatives of the objective
function (minimizing total fabric consumption) with a
learning rate (n = 0.01) to ensure stable convergence.
To enforce adherence to fabric constraints (D rik - C <
B), a proportional penalty function dynamically adjusts
ratios by penalizing deviations from ideal layer-to-
length ratios (Lk o }rik), with A = 0.5 governing
penalty strength. The GBPD workflow operates
iteratively, as shown in Fig. 4.

Algorithm 3 Gradient-Based Penalty-Driven (GBPD)
Require: Sizes (S), Orders (0), Board Length (B), Consumption (C),n = 0.1, 1 =
0.5, ML_model
Ensure: Optimal cutting plan with iterations K
r « InitializeRatiosWithML (S, D, ML_model)> ML — driven initialization

1

2 Ke<6

3 L « min ([%]) o Initial layer calculation
4. whiledo YD > 0and ||V|| = 0.001 do © Convergence criteria
5. Ve VEN, L7 +C) & Compute gradient
6. penalty « A * Zir - 1| © Proportional penalty
7 r <1 —nx*(V+ penalty) © Gradient descent update
8. r < ProjectToConstraints (r,B, C) © Enforce X1 xC < B
9. L < min ([%]) © Update layers
10. D«D—-Lx*r o Reduce remaining demand
11. K« K u{L*n)} © Record iteration
12, end while

13. return K

Fig. 4 Algorithm for the GBPD method

Initial ratios are seeded via a mock machine
learning (ML) model trained on historical COP data,
accelerating convergence toward high-utility patterns.

This integration of gradient-driven refinement,
constraint-aware penalties, and ML-guided
initialization enables GBPD to balance fabric

utilization and production accuracy while adapting to
dynamic order quantities.

GBPD updates by adjusting size ratios (73;) using
gradient descent to minimize the objective function:

K N
risct+1) = rig) —n-V (Z Ly Z Tir * C) (7
k=1 1

i=

where n = 0.01 is the learning rate.

Also, penalizes deviations from ideal layer-to-
length ratios (L, o« Y71;,) to ensure balanced fabric
consumption:

Ly
X Tk

where 4 = 0.5 controls penalty strength.

Penalty = A1 - | - 1| 8

3.7. Experimental setup and benchmark instance

generation

To ensure a robust and comprehensive evaluation
of the proposed algorithms, and in the absence of a
standardized public benchmark library for the apparel
COP problem, we generated a set of 15 test instances of
varying complexity. This approach aligns with the
practice of previous studies that often rely on
proprietary or representative industry problems to
validate their models [9]. The instances were generated
procedurally to reflect realistic manufacturing
scenarios.

The key parameters for generation were derived
from characteristics described in the literature [23] and
are defined as follows:

1. Number of Sizes (N): Varied from 5 to 10 unique
sizes per order to simulate both simple and complex
product lines.

2. Total Order Quantity: Ranged from 500 to
5,000 total garments to test scalability.

3. Demand Distribution (D;): Order quantities for
individual sizes were generated from a log-normal
distribution. This mimics real-world demand
patterns where a few core sizes (e.g., Medium,
Large) have high demand, while other sizes have
smaller, more niche order quantities.

4. Fabric Board Length (B): Fixed at a standard
industrial value of 15 meters for all instances.

5. Fabric Consumption per Garment (C): Assumed to
be 1.5 meters per piece for simplicity, consistent
with the base model.

6. Maximum Ply Height: A global constraint limiting
the layer count (L) to a maximum of 100 plies was
introduced to reflect the physical limitations of
cutting equipment.

3.8. Parameter tuning methodology

The performance of the proposed optimization
algorithms is  sensitive to their respective
hyperparameters. We systematically tuned each
algorithm to ensure a fair comparison and identify
robust parameter settings. We employed a grid search
methodology, a standard and exhaustive technique for
exploring a defined parameter space [26].

This tuning was performed on a dedicated set of 5
training instances, which were generated using the
same procedure described in this section but were kept
separate from the 15 final test instances used for
performance evaluation. The primary objective for the
tuning process was the maximization of the main
performance metric: fabric utilization. The search
space explored for each key parameter and the final
values selected for the experiments are detailed in
Table 3. This transparent approach ensures that each
algorithm was configured to perform at its best under
the evaluation criteria, thus validating the fairness of
our comparative analysis.
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Table 3. Hyperparameter tuning

Algorithm Parameter Description Search Space Final Value
AHOPS a Weight for the utilization score [0.5,0.6,0.7,0.8,0.9] 0.7
in the heuristic function.
Baynamic factor Percentage reduction factor for [5%, 10%, 15%, 20%] 10%
the dynamic board length
constraint after each iteration.
HIMOSA Crossover Probability of uniform crossover  [0.4,0.5,0.6,0.7,0.8] 0.5
Probability between two parent solutions in
the genetic algorithm.
Mutation Rate The rate of random adjustment [0.05,0.10,0.15,0.20] 0.10
to genes in the genetic algorithm
population.
Cooling Rate Exponential decay rate for the [0.90,0.95,0.99] 0.95
temperature parameter in
simulated annealing.
GBPD 1 (Learning Rate)  Step size for the gradient [0.1,0.05,0.01,0.005, 0.01
descent update rule. 0.001]
A (Penalty Strength of the penalty function [0.2,0.5,0.8,1.0,1.5] 0.5
Strength) applied for constraint violations.

4. RESULTS AND DISCUSSION

The efficacy of the three proposed optimization
methods—AHOPS, HIMOSA, and GBPD—was
systematically assessed compared to benchmarks
established in existing literature. The evaluation
involved 15 newly generated benchmark instances,
designed to represent various realistic industrial
scenarios, as outlined in the 'Experimental Setup and
Benchmark Instance Generation' section. The results
presented in Table 4 are averaged over 15 instances to
comprehensively assess each algorithm's performance
on critical metrics, such as fabric utilization,
computation time, and production accuracy. An
overview of the performance metrics is presented,
comparing the proposed methods with the established
baseline from previous literature.

Table 4 presents a detailed overview of the
performance metrics, covering the various optimization
methods utilized in this research study. The methods
are compared with the established baseline from prior
literature, providing a comprehensive view of their
efficacy.

AHOPS demonstrated significant computational
efficiency at 0.022 seconds, closely matching
established industry benchmarks for fabric utilization at
69.70%. This finding suggests that, while Mock ML
delivers expeditious results suitable for prompt
operational decision-making, it does not markedly
enhance fabric savings compared to conventional
methods. HIMOSA also achieved comparable fabric
utilization (69.70%) but required significantly higher
computational resources (0.527s), primarily due to its
genetic algorithm and simulated annealing processes.
This augmented computational demand can be

validated when confronted with complex problem
instances necessitating extensive search capabilities.

However, its prolonged runtime could impose
constraints in scenarios requiring prompt decision-
making. In stark contrast, GBPD demonstrated a
substantial enhancement over both conventional and
alternative computational strategies. It achieved a
substantially higher fabric utilization of 87.13%,
utilizing a minimal number of layers (12), thereby
demonstrating exceptional efficiency and significant
cost savings. Notably, GBPD maintained a rapid
computational performance (0.022s), rendering it both
practically attractive and operationally viable.

The performance of the GBPD optimizer can be
attributed primarily to its adaptive heuristic scoring
mechanism, which efficiently combines gradient
descent's precise adjustment capabilities with the
predictive refinement of a machine learning model. In
contrast to genetic or heuristic-driven methods, the
gradient descent optimizer effectively navigates the
decision space of COP by continuously adapting to
dynamic production constraints and minimizing fabric
wastage through penalty-driven optimization. In
contrast, the relatively limited enhancement in
performance exhibited by the Genetic Annealing
optimizer suggests that, while genetic algorithms are
powerful for extensive exploration of complex spaces,
their integration with simulated annealing in this
context did not significantly outperform simpler
heuristic approaches. This finding aligns with prior
literature that reported similar observations—genetic
methods often exhibit diminishing returns when
handling constrained, low-complexity scenarios typical
of COP. The AHOPS exhibited comparable utilization
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Table 4. Comparative performance analysis of COP optimization methods

Fabric Performance Computation
Methods Utilization . . Remarks
(%) Metrics Time (s)
Heuristics, 70—75 Utilization: ~70- Moderate to Established industry standard;
Metaheuristics, MILP 75%, Layers: high widely accepted but with
Algorithm [4] Moderate, limited utilization efficiency
Iterations: and higher computational
Moderate demands.
AHOPS 69.70% Utilization: 0.022 Fastest computation;
69.70%, Layers: comparable performance with
15, Iterations: 3 industry baseline, suitable for
quick runs. However, limited
fabric savings.
HIMOSA 69.71% Utilization: 0.527 High computational overhead,;
69.70%, Layers: good for complex search
15, Iterations: 5 spaces but no immediate
advantage over baseline
methods observed.
GBPD 87.13% Utilization: 0.023 Best performance, highest
87.13%, Fewest fabric savings, fastest
Layers: 12, computation. Clear
Iterations: 3 improvement over traditional
methods; strongly
recommended for practical
industry adoption.
to conventional methods and demonstrated adequate (RL) in dynamic production environments. For

speed; however, it lacked the nuanced predictive
capabilities  integrated into = GBPD.  While
computationally efficient, its simple scoring method
proved insufficient for overcoming the inherent trade-
offs between complexity and optimization
effectiveness characteristic of COP.

From a pragmatic standpoint, implementing the
GBPD method has the potential to markedly improve
the operational efficiency of the COP system in the
context of apparel manufacturing. This enhancement is
primarily attributable to improved fabric utilization
rates and reduced production costs associated with
material wastage. The computational efficiency
(0.0225s) also ensures real-time adaptability to dynamic
production schedules, catering effectively to the
demands of mass customization and variable order
scenarios.

The proposed GBPD method exhibited superior
performance in cut-order planning (COP) optimization,
achieving  87.13%  fabric utilization, 0.022s
computational efficiency, and <3% overproduction
error. This outcome demonstrates the efficacy of the
proposed method, as it outperforms conventional
heuristic  (AHOPS) and hybrid metaheuristic
(HIMOSA) approaches. These results address critical
gaps identified in prior research, such as the limitations
of genetic algorithms (GAs) and reinforcement learning

instance, Alsamarah et al. [21] reported on the
implementation of a genetic algorithm (GA)-based
continuous process optimization (COP) approach,
achieving 83.5% utilization of the fabric. However,
they also identified scalability challenges in scenarios
involving multi-color fabrics. In contrast, Hallah &
Bouziri [3] attained a 5-10% reduction in over-
production by applying hybrid heuristics. Nevertheless,
they acknowledged the necessity for -carefully
considering parameters in large-scale applications,
underscoring the sensitivity of outcomes to variations
in system parameters. Similarly, Dere [23] validated
LINGO-based COP models, achieving an average
fabric savings of 7.06%.

The results from Table 5 clearly demonstrate the
superior performance of the Gradient-Based Penalty-
Driven (GBPD) method across all significant metrics.
GBPD consistently achieved the highest fabric
utilization, averaging 87.40%, representing a
substantial improvement of over 17 percentage points
compared to AHOPS (69.74%) and HIMOSA
(69.75%). This high level of utilization directly
translates to significant material cost savings.
Furthermore, GBPD required the fewest layers on
average (11.9), reducing the labor and time associated
with the spreading and cutting processes.

In terms of computational efficiency, GBPD was
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Table 5. Detailed performance analysis of COP optimization methods on 15 benchmark instances

AHOPS HIMOSA GBPD
Instance 2,21) Layers Tz;r)le Util. (%) Layers Tgl)le t{,};l) Layers Tgr)le
1 68.5 16 0.021 69.1 15 0.498 86.5 12 0.022
2 70.1 15 0.02 70.3 15 0.515 87.2 12 0.023
3 69.2 15 0.023 68.9 16 0.531 87.8 11 0.022
4 71.0 14 0.022 70.5 14 0.54 88.1 12 0.024
5 69.8 15 0.021 69.9 15 0.522 86.9 13 0.023
6 69.5 15 0.024 70.1 15 0.529 87.5 12 0.023
7 68.9 16 0.022 69.2 16 0.511 86.8 13 0.024
8 70.3 15 0.023 70.8 15 0.535 87.3 12 0.024
9 69.6 15 0.021 69.4 15 0.525 87.0 12 0.022
10 70.5 14 0.023 69.8 15 0.542 87.9 11 0.022
11 69.1 15 0.022 68.8 16 0.519 86.7 13 0.024
12 70.2 15 0.023 70.6 14 0.533 87.4 12 0.024
13 69.4 15 0.024 69.0 15 0.528 87.1 12 0.023
14 68.8 16 0.021 69.5 15 0.509 86.6 13 0.023
15 70.6 14 0.022 70.1 14 0.53 88.0 11 0.024
Average 69.7 15 0.022 69.76 15 0.527 87.26 12.1 0.023

exceptionally fast, with an average computation time of
0.023 seconds, making it comparable to the simple
heuristic AHOPS (0.022 seconds) and drastically faster
than the metaheuristic HIMOSA (0.526 seconds).
AHOPS, while extremely fast, failed to produce
solutions better than the baseline. HIMOSA, despite its
extensive search capabilities, did not yield any
significant improvement in utilization to justify its
much higher computational cost. The performance of
GBPD can be attributed to its hybrid design, where the
ML-guided initialization effectively directs the search
to a promising region of the solution space, and the
gradient descent algorithm efficiently refines the
solution to a high-quality local optimum. This
combination proves to be both highly effective and
computationally efficient for the COP problem.

The performance of our best method, GBPD, also
compares favorably to benchmarks from prior
literature. For instance, Alsamarah ef al. [21] reported
a GA-based approach achieving 83.5% utilization,
surpassing our GBPD method's average of 87.4%.
Similarly, the 7.06% average savings reported by Unal
& Yiksel [18] is significantly lower than the
improvements demonstrated by GBPD. It confirms that
our proposed method outperforms the other
frameworks developed in this study and represents a
meaningful advancement over existing state-of-the-art
methods.

However, their approach relied on outdated
hardware, which constrained real-time adaptability.
This limitation is explicitly addressed by the gradient-
based penalty-driven framework proposed herein.
Integrating gradient descent with mock ML predictions
trained on historical COP data enables GBPD to

balance fabric utilization and computational speed

dynamically. This approach surpasses static methods,

such as Shang et al. [19] heuristic algorithm (tested on

500 static cases), and overcomes the parameter tuning

bottlenecks of hybrid PSO-GA  frameworks

Nascimento ef al. [32]. It is important to note that the

present work addresses the significant gaps in the

extant literature regarding trade-offs between multi-
objective optimization (e.g., cost, time, and
environmental sustainability) and industrial scalability.

This issue has been previously identified in studies such

as Yang et al. [22], which noted the limitations of ant

colony optimization in small-scale datasets. The GBPD
framework's capacity to accommodate variable order
quantities and multi-color constraints gaps in existing
works, such as Delorme [33] in packing models,
establishes it as a pragmatic solution for contemporary
mass customization demands. These advancements are
in accordance with the calls for sustainable production

strategies by Alsamarah et al. [21], and Wong et al. [16]

by reducing material waste and computational over-

head. They offer actionable insights for manufacturers
seeking low-cost, adaptive COP systems.

This study provides insights for apparel
manufacturers aiming to enhance cut-order planning
(COP) while tackling industry-specific challenges such
as material waste, computational efficiency, and
fluctuating production demands.

1. The GBPD method exhibits a notable average fabric
utilization of 87.4% and reduces overproduction
error to <3%, establishing it as an effective
instrument for sustainable manufacturing. In an
industry where fabric accounts for 50-70% of total
garment costs, a substantial reduction in material
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waste directly results in decreased production costs
and a reduced environmental footprint, which aligns
with corporate sustainability objectives.

2. The rapid computation time of GBPD, averaging
0.023 seconds, represents a significant advantage in
contemporary manufacturing settings. In contrast to
static  heuristic or genetic algorithm-based
frameworks, which may exhibit slow adaptability,
GBPD demonstrates efficiency that facilitates real-
time modifications to variable order quantities and
intricate  multi-color fabric constraints. This
adaptability is crucial for facilitating the mass
customization trend, as swift and flexible responses
to fluctuating market demand are necessary for
sustaining competitiveness.

3. The comparative analysis of AHOPS, HIMOSA,
and GBPD highlights the essential trade-offs among
computational speed, solution quality (fabric
utilization), and algorithmic complexity. It offers
manufacturers a structured approach to choosing a
method  corresponding to  their  particular
operational priorities. For example, a straight-
forward heuristic such as AHOPS delivers
maximum speed for small or non-critical orders. In
contrast, GBPD offers a significantly better solution
with minimal additional computation time,
rendering it the optimal choice for most scenarios
aimed at cost reduction and efficiency.

4. GBPD's capacity to consistently identify solutions
with an average of 12 layers diminishes the labor-
intensive spreading process, thereby reducing
operational costs. Integrating minimized material
waste, decreased labor, and accelerated planning
cycles has a cumulative impact on overall
profitability. This statement highlights the primary
goal of COP systems: to convert planning efficiency
into measurable financial advantages.

5. GBPD has been shown to achieve an
overproduction error of <3%, thus alleviating the
financial burden associated with excess inventory.
This advantage over traditional methods, which
often result in 5-10% overproduction errors,
represents a notable enhancement.

6. Unlike prior research (e.g., [1]), GBPD utilizes
adaptive penalty-driven constraints to tackle multi-
color fabric situations, allowing manufacturers to
handle intricate color variations while maintaining
efficiency.

5. CONCLUSION

This study conducted a comparative examination
of three distinct optimization approaches for cut order
planning: Adaptive Heuristic Scoring Optimizer
(AHOPS), Hybrid Metaheuristic Optimization with
Simulated Annealing (HIMOSA), and Gradient-Based
Penalty-Driven (GBPD). The findings unequivocally
indicate that the GBPD method much surpassed the

other two methods and traditional industrial standards,
with the maximum fabric usage (87.13%), the fewest
layers needed (12), and remarkable computational
efficiency (0.022 seconds). The GBPD exhibited its
robustness via its adaptive mechanism, effectively
balancing fabric use, manufacturing precision, and
velocity. This method markedly improves the practical
implementation of optimization solutions in the textile
manufacturing sector by efficiently minimizing fabric
waste and related production expenses. This work
suggests future research approaches that involve
expanding the GBPD method to encompass larger and
more intricate production scenarios, incorporating real-
time adaptive features, and enhancing the predictive
machine learning components to optimize results
further.
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