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This study analyzes Packed Red Cells (PRC) inventory management at PMI Banyumas 
using a Monte Carlo simulation to evaluate different stock management strategies. The 
initial model shows a significant shortage of blood supply. Two alternative scenarios were 
simulated to address this issue: adding 55 additional units from external sources and 
increasing donor participation by 15%. The simulation results demonstrate that these 
strategies effectively reduce the shortage from 62 units to just 5 units without increasing 
expired inventory while achieving the lowest total cost of Rp. 9,927,682. These findings 
highlight that increasing donor participation offers the best performance in balancing 
supply and demand. This study provides simulation-based strategic recommendations 
that other PMI branches can replicate to improve bloodstock management, reduce 
shortages, and maintain optimal service levels. 
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1. INTRODUCTION 

Blood plays a vital role in the body, particularly in 
transporting oxygen and nutrients and supporting the 
immune system. The circulatory system facilitates blood 
distribution, with the heart as the primary pump. Any 
disruption in this flow can result in severe tissue damage 
or even death, underscoring the critical importance of 
maintaining sufficient blood availability, especially for 
medical procedures such as transfusions (Saviano et 
al., 2024). 

In Indonesia, blood management is carried out by 
the Indonesian Red Cross (Palang Merah Indonesia or 
PMI) through its Blood Transfusion Units (Unit Kegiatan 
Transfusi Darah or UKTD). This process includes donor 
selection, blood collection, storage, and distribution. To 
ensure the availability of blood in optimal conditions, 
PMI implements Blood Supply Chain Management 
(BSCM), which consists of stages such as collection, 
production, storage, and distribution (Torrado & 
Barbosa-Póvoa, 2022). However, this management 
faces various challenges, including the perishable 
nature of blood, the need for specialized storage, and 
uncertainties in demand. Therefore, effective coor-
dination among donors, blood banks, and healthcare 
facilities is essential to maintain stock balance and 
ensure smooth distribution (Jin et al., 2021). 

The blood inventory management at PMI 
Banyumas system involves multiple stages, including 

donor recruitment, blood collection, testing, production 
of blood components, storage in blood banks, and 
distribution to hospitals. Each stage presents inventory 
management challenges, particularly in balancing 
operational and safety stock levels to meet fluctuating 
demand while minimizing expirations. Traditionally, 
inventory systems rely on historical data to determine 
reorder points and safety stock levels. However, due to 
the highly variable and unpredictable nature of blood 
demand affected by accidents, emergencies, seasonal 
factors, and medical procedures, historical averages 
alone may not provide sufficient accuracy for 
forecasting. Therefore, this study applies Monte Carlo 
simulation to realistically model demand uncertainty by 
generating probabilistic outcomes rather than static 
forecasts. This method facilitates the integration of 
demand uncertainty and risk considerations into 
inventory decision-making. This research addresses 
unmet demand (shortages) and evaluates key 
performance indicators of the inventory system, 
including stock availability, expiration rates, and cost 
efficiency. Through simulation, this study aims to 
provide a more comprehensive evaluation of the blood 
inventory system at PMI Banyumas to support more 
adaptive and data-driven decision-making. 

The imbalance between supply and demand is a 
major challenge in blood inventory management. For 
instance, PMI Banyumas Regency often experiences 
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shortages (out of stock) or overstock, which risks 
resource wastage. This challenge is particularly 
complex for blood type AB, which constitutes only about 
8.38% of Indonesia's population, or approximately 
3,175,187 people (Direktorat Jenderal Kependudukan 
dan Pencatatan Sipil, 2021). With limited supply 
compared to other blood types, even minor changes in 
demand or distribution can significantly impact its 
availability at PMI, including in Banyumas Regency. 

Based on PMI Banyumas data from June 2023 to 
May 2024, there was a deficit of 688 units of Packed 
Red Cells (PRC) for blood type AB. Demand reached 
4,825 units, while supply was only 4,137 units. This 
imbalance is particularly critical because blood type AB 
has the lowest proportion in the population, both 
nationally and in the Banyumas Regency. Data from 
UDD PMI Banyumas in 2020 shows that only about 
7.5% of total PRC production comes from AB blood 
type, far lower than type O (38.5%), B (30.2%), and A 
(23.7%). The limited number of AB donors increases the 
vulnerability of AB stock to shortages. Moreover, AB 
patients can only receive transfusions from AB donors 
or, under specific conditions, from universal donors, 
although full compatibility is medically preferred to avoid 
transfusion reactions. In Banyumas, certain cases, such 
as thalassemia and chronic diseases, also require 
regular transfusions, making the availability of AB PRC 
crucial. This shortage could hinder critical medical 
procedures like surgeries or emergency care, 
increasing mortality risk due to delayed treatment 
(Jayaram et al., 2024). Additionally, stock imbalances 
increase expired blood units, which must be discarded, 
ultimately leading to higher costs (Anchinmane & 
Sankhe, 2022). 

Monte Carlo simulation can be used as a 
predictive inventory management method to address 
blood demand uncertainties. This simulation utilizes 
probability distributions to estimate demand variations 
based on factors such as accidents, surgical needs, and 
blood donation trends. This approach has proven 
effective in reducing the risks of stockouts and 
overstock by considering dynamic demand patterns 
(Darnis et al., 2020). The Monte Carlo technique 
employs random sampling and statistical evaluation to 
estimate a range of potential outcomes. This approach 
has been highly useful in health care planning 
treatments, evaluating risks, and managing resource 
distribution (Velikova et al., 2024).  

This research focuses on analyzing blood 
inventory management at PMI Banyumas, considering 
aspects such as storage costs, blood availability levels, 
and service levels. Monte Carlo simulation is 
implemented using Microsoft Excel due to its 
accessibility and ease of implementation in PMI's 
operational environment. This method has been shown 
to improve the accuracy of blood demand predictions 
and can serve as a basis for more effective decision-
making in stock management strategies (Efendi & 
Zahmi, 2023). Additionally, information technology in 
blood inventory management can enhance 
transparency and responsiveness to demand 
fluctuations (monireh Ahmadimanesh et al., 2022). The 
results of this study are expected to provide more 
efficient recommendations for bloodstock management, 

not only for PMI Banyumas but also for other blood 
transfusion units in Indonesia. 

 
2. RESEARCH METHODS 
2.1. Blood Supply Chain 

The Blood Supply Chain is a complex 
management and logistics system designed to ensure 
the availability and safety of blood for patients. This 
supply chain encompasses a series of processes, from 
blood collection from donors, separation of blood 
components such as Packed Red Cells (PRC), plasma, 
and platelets, and rigorous testing to guarantee safety 
(Imamoglu et al., 2023). After these processes, blood is 
stored under controlled conditions, such as regulated 
temperatures, before being distributed to healthcare 
facilities for transfusion purposes. This process requires 
effective coordination among blood banks, hospitals, 
and related parties to ensure that the available blood 
meets the necessary quantity and quality standards. 

Effective logistics management in the Blood 
Supply Chain is essential, given the perishable nature 
of blood and its direct impact on patient safety. Efficient 
inventory management and well-organized distribution 
can reduce the risks of stockouts and blood wastage 
due to expiration (monireh Ahmadimanesh et al., 2022). 
Additionally, accurate blood demand planning is crucial 
in preventing stock imbalances that could lead to 
wastage or increased patient health risks. One of the 
challenges in the Blood Supply Chain is predicting 
fluctuating blood demand and managing inventory while 
considering limited shelf life (Putri & Sitepu, 2024). 

To optimize the Blood Supply Chain, simulation-
based approaches such as Monte Carlo are often used 
to model uncertainties in blood demand and supply. 
This simulation enables risk analysis and evaluation of 
various inventory management scenarios, such as 
determining safety stock levels and optimal blood 
procurement policies (Abidovna, 2023). By leveraging 
historical data and probabilistic models, Monte Carlo 
simulation can help reduce uncertainties in planning 
and managing the blood supply chain, ensuring timely 
and efficient blood availability for needy patients. 

 

 
 

Fig. 1. Blood supply chain diagram at UTD PMI 
Banyumas with a focus on monte carlo simulation for 

bloodstock management 
 

Fig. 1 illustrates the entire flow of the Blood Supply 
Chain, from the blood collection process by donors to 
the distribution of blood to hospitals for transfusion. In 
the context of this study, the focus of the Monte Carlo 
simulation is on the storage stage and bloodstock 
management at UDD PMI Banyumas. This simulation 
optimizes bloodstock management by considering 
blood demand and supply fluctuations uncertainties. By 
using Monte Carlo simulation, we can estimate blood 
requirements more accurately and reduce the risks of 
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blood shortages or wastage that may arise from stock 
imbalances. 

 
2.2. Packed Red Cells 

Packed Red Cells (PRC) are blood components 
used to increase hemoglobin and hematocrit levels by 
separating plasma from whole blood. PRC is crucial in 
enhancing the body's oxygen-carrying capacity, aiding 
anemic patients by alleviating symptoms such as 
fatigue, and supporting various medical procedures, 
including surgeries and oncology treatments (Al-Farisy, 
2023). Additionally, PRC is utilized in emergencies such 
as acute bleeding or trauma, where patients require 
rapid blood transfusions to maintain vital bodily 
functions (Maegele et al., 2023). 

Managing PRC stock involves a series of 
processes, including blood collection, production, 
storage, and distribution. After being collected from 
donors, blood is processed into various products, stored 
in blood centers or hospitals, and then distributed for 
transfusion to ensure availability for needy patients 
(Sumbogo, 2021). 
 
2.3. Monte Carlo Simulation 

Monte Carlo simulation is a computational method 
used to model uncertainty by generating multiple 
samples from the probability distribution of a random 
variable (Harahap, 2024). This method works by 
repeatedly running random simulations based on 
predetermined probability distributions, producing 
various possible possible scenarios. As a result, Monte 
Carlo simulation enables a deeper analysis of data 
variability, which is particularly useful in situations 
where uncertainty and risk need to be carefully 
considered. The primary advantage of this method is its 
ability to provide a comprehensive overview of various 
possible outcomes, including extreme or rare events. It 
makes Monte Carlo simulation effective in analyzing 
data variability, allowing decision-makers to assess 
risks and determine strategies based on the distribution 
of possible outcomes (Maulana, 2024).  

Monte Carlo simulation can be used to predict 
blood demand, estimate the risk of stockouts, and 
minimize wastage due to expiration (Awandani, 2022). 
For example, by modeling the probability distribution of 
blood demand and delivery times, this simulation can 
generate thousands of scenarios depicting possible 
outcomes of the inventory system. This allows for more 
accurate risk analysis and better planning to anticipate 
demand fluctuations. This method can also be used to 
optimize safety stock levels and determine the most 
efficient procurement policies (Maitra, 2024). 
 
2.4. Simulation Workflow 

The simulation process in this study is 
systematically designed to follow a series of steps that 
transform historical supply and demand data into a 
stochastic simulation model. These steps ensure that 
the generation of random variables, stock calculations, 
and cost evaluations are conducted in a structured and 
repeatable manner (Fig. 2). The complete simulation 
workflow is outlined as follows: 
1. Data Input and Probability Calculation 

Historical supply and demand data are processed by 

calculating frequency, probability, and cumulative 
probability. Upper and lower bounds are then 
determined for each demand level to define the 
probability intervals. 

2. Model Construction 
The simulation model is built in Excel with the 
following formulas: 
a) Random Number Generation: 

= RANDBETWEEN (0;99) 
b) Starting Stock:  

Stock at the beginning of the day equals the 
ending stock of the previous day. 

c) Supply Formula: 
=IF (Random Number Supply < UpperBound1, 
Supply Amount 2; IF (Random Number Supply < 
Upper Bound 3; Supply Amount 2, ...))  

d) Demand Formula: 
=IF (Random Number Demand < Upper Bound 
2; Demand Amount 1; IF Random Number 
Demand < Upper Bound 3, Demand Amount 2, 
...)) 

e) Ending Stock: 
= IF (Starting Stock + Supply - Demand <=0; 0; 
Starting Stock + Supply - Demand) 

f) Shortage: 
= IF (Starting Stock + Supply < Demand; 
Demand - Supply - Starting Stock; 0) 

g) Expired Stock: 
Inventory that exceeds 25 days of storage. 

3. Cost Accumulation 
Inventory costs are calculated as follows: 
a) Holding Cost: 

= ((Starting Stock + Ending Stock)/2) × Holding 
Cost per Unit 

b) Production Cost:  
= Supply × Production Cost per Unit 

c) Ordering Cost: 
= IF (Shortage > 0; 1 × Ordering Cost; 0) 

d) Shortage Cost:  
= IF (Shortage > 0; Shortage × Shortage Cost 
per Unit; 0) 

e) Expired Cost:  
= Number of Expired Units × Expiration Cost per 
Unit 

4. Service Level Calculation 
Service level is calculated using the formula: 
= (Total Supply / (Total Supply + Total 
Shortage)) × 100% 
 

2.5. Simulation Workflow 
Replication in simulation aims to reduce result 

variance and ensure more stable and representative 
estimates. This study determines the number of 
replications (n) to enhance accuracy and reflect real-
world conditions with a certain confidence level (Akerina 
& Adi, 2023). This process is carried out by running the 
simulation model repeatedly to analyze the distribution 
and variability of results. 

Once the data is collected, the probabilities of PRC 
supply and demand are calculated to build a simulation 
model that enables the analysis of blood requirements 
based on supply and demand variability. An initial 
simulation is conducted with 10 replications to obtain the 
data's mean, standard deviation, and variance. 
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Subsequently, the half-width value is calculated to 
assess the precision of the simulation results using the 
following formula: 

 

𝐻𝑎𝑙𝑓 𝑊𝑖𝑑𝑡ℎ =
(𝑡𝑛−1,𝑛/2) × 𝑆

√𝑛
                     (1) 

 

Based on the half-width value, the percentage 
error relative to the mean is calculated using the 
equation: 
 

% 𝑒𝑟𝑟𝑜𝑟 =
ℎ𝑎𝑙𝑓 𝑤𝑖𝑑𝑡ℎ 

�̅�
100%             (2) 

 

Next, the optimal number of replications (n’) is 
calculated using the following formula: 

 

𝑛′ = [
𝑡𝑛−1,𝑛/2  × 𝑆

𝐻𝑎𝑙𝑓 𝑊𝑖𝑑𝑡ℎ′
]

2
                           (3) 

 

Once the optimal number of replications is 
determined, validation ensures the simulation model 
accurately represents the real-world system at the 
Indonesian Red Cross (PMI) in the Banyumas Regency. 
Based on the simulation results, inventory management 
scenarios are then developed to optimize service levels 
while minimizing storage costs, taking into account 
uncertainties in blood supply and demand. 
 

 
 

Fig.  2. Workflow of the simulation model development 
and analysis process 

 
2.6. Validation 

Models play a crucial role in decision-making by 
helping to predict outcomes based on assumptions and 
experiences. A model serves as a simplified 
representation of a complex real-world system, enabling 
the analysis of various scenarios without direct 
experimentation. However, validation is a critical step in 
ensuring the reliability of a model. Validation is 
necessary to confirm that the developed model aligns 
with the real-world system or actual conditions as a 

basis for comparison (Sadeghi, 2022). To be useful in 
decision-making, a model must closely approximate the 
characteristics of the real system. This includes the 
model's ability to represent key variables, relationships 
between variables, and the overall dynamics of the 
system. Model predictions can be misleading and 
potentially lead to suboptimal decisions without proper 
validation. Additionally, inadequately validated models 
can produce systematic errors that significantly impact 
the analysis results (Navarra, 2021). Therefore, model 
validation and calibration are essential steps to ensure 
the relevance and reliability of the model in real-world 
contexts. 

In this study, an empirical distribution was used to 
represent supply and demand, derived directly from 
historical data. Due to the non-normality of the data, the 
Mann-Whitney U test was selected for model validation 
as a non-parametric alternative. 
The hypotheses tested are: 

a. H₀: The distribution of the model output is equal to 
the distribution of the real system data. 

b. H₁: The distributions are different. 

If the p-value > 0.05, H₀ is accepted, indicating no 
significant difference between the model and the real 
system, thus validating the model. This validation 
ensures the model's robustness despite the irregular 
and empirical nature of the blood supply-demand 
patterns. 

 
3. RESULTS AND DISCUSSION 
3.1. Historical Data Probabilities 

Probability distributions were developed for supply 
and demand based on the data on the receipt and 
demand for Packed Red Cells (PRC) of blood type AB 
at PMI Banyumas from June 2023 to May 2024. The 
highest recorded receipt was 40 units, while the highest 
demand reached 52. 

The empirical probability distributions were 
constructed directly from historical frequency data, as 
presented in Table 1 and Table 2 (demand). This 
approach was selected because the data did not 
conform to common theoretical distributions (such as 
normal or Poisson), reflecting the irregular and 
unpredictable nature of blood donations and requests. 
Initial goodness-of-fit tests supported the use of an 
empirical approach. These distributions from Table 1 
and Table 2 were used as the basis for generating 
random values in the simulation by mapping random 
numbers to cumulative probability intervals to simulate 
daily supply and demand variations. 
 
3.2. Cost Data 

The cost data used in this study were obtained 
from official documents available at PMI Banyumas and 
adjusted based on previous studies to supplement cost 
components that were not explicitly recorded. The costs 
considered in this model include procurement, 
production, storage, expiration, and shortage costs. 
Other potential costs, such as transportation and donor 
promotion, were excluded due to unavailable data and 
were assumed negligible in their impact on the total 
cost. Transportation costs were assumed to be included  
in the shortage cost component, as blood procurement 
from other PMI units inherently includes purchasing and 
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delivery expenses (Table 3). 
 

Table 1. Probability distribution and random number 
interval for PRC receipts June 2023 – May 2024) 

 

Number 
of 

Receipts 
Frequency Probability 

Cum. 
Probability 

Lower 
Bound 

Upper 
Bound 

0 48 0.132 0.132 0 13 
1 6 0.016 0.148 13 15 
2 15 0.041 0.189 15 19 
3 10 0.027 0.216 19 22 
4 10 0.027 0.244 22 24 
5 20 0.055 0.299 24 30 
6 15 0.041 0.340 30 34 
7 13 0.036 0.375 34 38 
8 11 0.030 0.405 38 41 
9 16 0.044 0.449 41 45 
10 16 0.044 0.493 45 49 
11 14 0.038 0.532 49 53 
12 18 0.049 0.581 53 58 
13 19 0.052 0.633 58 63 
14 20 0.055 0.688 63 68 
15 15 0.041 0.729 68 73 
16 13 0.036 0.764 73 76 
17 7 0.019 0.784 76 78 
18 4 0.011 0.795 78 79 
19 11 0.030 0.825 79 82 
20 4 0.011 0.836 82 84 
21 10 0.027 0.863 84 86 
22 9 0.025 0.888 86 89 
23 9 0.025 0.912 89 91 
24 5 0.014 0.926 91 93 
25 3 0.008 0.934 93 93 
26 2 0.005 0.940 93 94 
27 4 0.011 0.951 94 95 
28 6 0.016 0.967 95 97 
29 2 0.005 0.973 97 97 
31 2 0.005 0.978 97 98 
33 1 0.003 0.981 98 98 
34 1 0.003 0.984 98 98 
37 1 0.003 0.992 99 99 
38 2 0.005 0.997 99 100 
40 1 0.003 1.000 100 100 

Total 365 1 1 100 100 
 

3.3. Determination of the Number of Replications 
In this study, the absolute error method with a 95% 

confidence level is used to determine the sample size 
(n), which serves as the basis for setting the number of 
simulation replications. In the initial stage, the 
simulation is conducted with 10 replications (Table 4). 

The next step is to determine the t-table value 
used in the half-width calculation. With a significance 
level of 5% and a sample size (n) of 10, the t-table value 
for t(n – 1; α/2) or t(9; 0.025) is 2.26. Once this value is 
obtained, the half-width is calculated using the following 
formula: 

 

𝐻𝑎𝑙𝑓 𝑊𝑖𝑑𝑡ℎ =
(𝑡𝑛−1,𝑛/2)  ×  𝑆

√𝑛
 

(4) 
 

=
2.26 × 0.634

√10
= 0.453 

 

The calculation results show that the half-width 
value is 0.453. Next, the percentage error relative to the 
average is calculated. 

 

% 𝑒𝑟𝑟𝑜𝑟 =
𝐻𝑎𝑙𝑓 𝑊𝑖𝑑𝑡ℎ 

�̅�
100% 

(5) 
 

=
0.453

23.687
100% = 1.914 

 

This error value needs to be reduced to improve 
the accuracy of the simulation results. Therefore, a 
target error reduction to 0.8% is set, requiring the half-

width value to be adjusted to:   
 

𝐻𝑎𝑙𝑓 𝑊𝑖𝑑𝑡ℎ′ = �̅� × 0.8% 
(6) 

 = 23.687 × 0.008 = 1.914 
 

Thus, the desired half-width is 75.256. 
Subsequently, a recalculation is performed to determine 
the new number of replications (n') required. This 
calculation uses the latest half-width value previously 
determined, yielding the following result: 

 

𝑛′ = [
𝑡𝛼/2,𝑛−1)  ×  𝑆

HalfWidth′
]

2

= [
 2.26 ×  0.634

0.189
]

2

= 57.47  (7) 

 

Based on the calculation results, the number of 
replications required to achieve the desired level of 
accuracy is 58 replications. 
 

Table 2. Probability distribution and random number 
interval for PRC demands (June 2023 – May 2024) 

 

Number 
of 

Receipts 
Frequency Probability 

Cum. 
Probability 

Lower 
Bound 

Upper 
Bound 

0 24 0.066 0.066 0 7 
1 6 0.016 0.082 7 8 
2 15 0.041 0.123 8 12 
3 11 0.030 0.153 12 15 
4 14 0.038 0.192 15 19 
5 14 0.038 0.230 19 23 
6 11 0.030 0.260 23 26 
7 17 0.047 0.307 26 31 
8 11 0.030 0.337 31 35 
9 14 0.038 0.375 35 39 

10 17 0.047 0.422 39 44 
11 22 0.060 0.482 44 50 
12 21 0.058 0.540 50 56 
13 13 0.036 0.575 56 60 
14 13 0.036 0.611 60 64 
15 22 0.060 0.671 64 70 
16 10 0.027 0.699 70 73 
17 8 0.022 0.721 73 75 
18 12 0.033 0.753 75 78 
19 12 0.033 0.786 78 81 
20 13 0.036 0.822 81 85 
21 6 0.016 0.838 85 87 
22 4 0.011 0.849 87 88 
23 8 0.022 0.871 88 90 
24 5 0.014 0.885 90 91 
25 4 0.011 0.896 91 92 
26 5 0.014 0.910 92 93 
27 3 0.008 0.918 93 94 
28 3 0.008 0.926 94 95 
29 3 0.008 0.934 95 96 
30 4 0.011 0.945 96 97 
31 1 0.003 0.948 97 97 
32 1 0.003 0.951 97 97 
33 2 0.005 0.956 97 98 
34 1 0.003 0.959 98 98 
35 1 0.003 0.962 98 98 
36 1 0.003 0.964 98 98 
37 4 0.011 0.975 98 99 
39 4 0.011 0.986 99 100 
42 1 0.003 0.989 100 100 
43 1 0.003 0.992 100 100 
44 1 0.003 0.995 100 100 
47 1 0.003 0.997 100 100 
52 1 0.003 1.000 100 100 

Total 365 1 1 100 100 
 

Table 3. Inventory cost data 
 

Cost Component Cost 
Procurement Cost Rp.  117,388 

Production Cost Rp.    15,777 

Storage Cost Rp.      2,033 

Expiration Cost Rp.  490,000 

Shortage Cost Rp.  360,000 
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Table 4. Initial replication output 
 

n 
Average 
Receipts 

Average 
Demand 

Total 

1st Replication  10.740 12.049 22.789 
2nd Replication 11.444 12.989 24.433 
3rd Replication 11.803 12.688 24.490 
4th Replication 10.816 12.285 23.101 
5th Replication 11.611 12.244 23.855 
6th Replication 11.005 12.619 23.625 
7th Replication 12.115 12.200 24.315 
8th Replication 11.274 12.792 24.066 
9th Replication 11.112 11.964 23.077 
10th Replication 11.101 12.014 23.115 

Average (x̄) 23.687 
Standard Deviation (S) 0.634 
Variance 0.403 

 
3.4. Model Validation 

To ensure the accuracy and reliability of the 
simulation model for decision-making, we performed 
validation using the Mann-Whitney U test. This non-
parametric test compares two independent samples 
without assuming normality. The significance level (α) 
was set at 0.05, which is the threshold for determining 
whether any observed differences between the actual 
and simulated data are statistically significant. If the p-
value is greater than 0.05, the null hypothesis (H₀), 
which states no significant difference between the 
actual and simulated distributions, cannot be rejected. 
Conversely, if the p-value is less than or equal to 0.05, 
the null hypothesis is rejected, suggesting a significant 
difference between the distributions. 
1. Supply Simulation Validation 

Since the p-value of 0.419 is greater than the 
significance level of 0.05, we fail to reject the null 
hypothesis (H₀) (Fig. 3). This indicates that there is 
no significant difference between the actual PRC 
supply distribution and the simulated supply 
distribution, meaning the model effectively 
reproduces the actual system. 

 

 
Fig.  3. Mann-Whitney test results comparing 

actual and simulated blood supply data 
 

 
Fig. 4. Mann-Whitney test results comparing actual 

and simulated blood demand data 

2. Demand Simulation Validation 
With a p-value of 0.147, which is also greater than 
the significance level of 0.05, we fail to reject the null 
hypothesis (H₀) (Fig. 4). This suggests no significant 
difference between the actual PRC demand 
distribution and the simulated demand distribution, 
indicating that the model accurately reflects the real-
world demand. 

 
3.5. Scenario Development 

Scenarios in the Monte Carlo simulation are 
designed to reduce inventory costs while improving 
service levels. Additionally, these scenarios are 
developed by considering uncertainties in demand and 
supply, making the resulting strategies more flexible 
and adaptable to real-world conditions (Table 5). The 
following scenarios have been designed: 
a. Scenario 1 

Adding a fixed supplement of 55 PRC units per 
month directly addresses the issue of blood 
shortages predictably. It’s important to note that the 
55 units were derived based on the average monthly 
shortage observed in the initial model. This ensures 
that the scenario mirrors real-world behavior and 
can effectively handle the average demand. 

b. Scenario 2 
By increasing the donor supply by 15%, Scenario 2 
is designed to enhance availability, which could lead 
to a more consistent and robust blood supply. The 
multiplier of 1.15 is applied to the historical donor 
data, which helps maintain the empirical distribution 
while scaling up the supply to match increased 
demand. 

Table 5. Scenario design 

Scenario 
Type 

Description 

Initial Model The validated replication results that 
represent the real-world system. 

Scenario 1 The initial model with additional blood 
units from other PMI units to meet 
demand when inventory is insufficient, 
based on the average shortage of the 
initial model (55 units). 

Scenario 2 Scenario 1 plus a 15% increase in the 
number of donors to improve blood 
availability (Hasanah, 2024) 

 
3.6. Result 

The simulation results for the Initial Model, 
Scenario 1, and Scenario 2 are summarized in Table 6 
and Fig. 5, Fig. 6 and Fig. 7, providing a comprehensive 
comparison across key performance indicators 
shortage, expired units, service level, and total cost. 
These findings highlight the progressive improvements 
achieved through each scenario, offering valuable 
insights into the effectiveness of different inventory 
management strategies.  

Based on the Fig. 5, it can be seen that the initial 
model (blue) has a higher and more frequent shortage 
compared to Scenario 1 (orange) and Scenario 2 (gray). 
Scenario 1 shows a significant reduction in shortages 
compared to the initial model, although there are still 
some periods with relatively high shortages. Meanwhile, 
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Scenario 2 performs the best with the lowest and least 
frequent shortages, indicating that the 15% increase in 
donors is more effective in reducing shortages 
compared to simply increasing the supply from other 
PMIs. This suggests that Scenario 2 is better at 
maintaining blood availability while controlling costs. 

 

 
 

Fig. 5. Comparison of shortage levels from scenarios 
 

 
 

Fig.  6. Comparison of expired levels from scenarios 
 

Across 30 time periods, all three scenarios (Initial 
Model, Scenario 1, and Scenario 2) consistently 
recorded zero expired units, demonstrating that their 
inventory control strategies effectively prevent wastage 
(Fig, 6). Despite varying shortage levels, each model 
achieved the primary goal of zero expirations, indicating 
no further adjustments are needed for expired stock 
management. 

 

 
 

Fig. 7. Comparison of service level 
 

The service level markedly improved from the 
Initial Model to Scenario 2. In the Initial Model, the 
service level stood at 86.58%, indicating that 13.42% of 
demand went unmet (Fig. 7). Under Scenario 1, where 
a fixed supply supplement was added, the service level 
rose sharply to 96.49%, a 9.91 percentage-point 
increase, thereby satisfying nearly all demand. Further 
enhancement in Scenario 2 via a 15% increase in 
donors boosted the service level to 98.66%, an 
additional 2.17 percentage points. Although the gain 
from Scenario 1 to Scenario 2 is smaller than the initial 

jump, achieving 98.66% demonstrates that virtually all 
demand is now met, approaching an ideal fulfillment 
rate. 

 

Table 6. Comparison between scenarios 
 

Parameter Initial Model Scenario 1 Scenario 2 

Shortage 
(Units) 

62 11 5 

Expired 
(Units) 

0 0 0 

Service 
level (%) 

86.58% 96.49% 98.66% 

Total Cost 
(Rp) 

30,816,533 10,968,042 9,927,682 

 
This study evaluates various factors, including 

storage costs, stock shortages, expiration, and service 
levels, to determine the optimal inventory strategy. The 
simulation results show that Scenario 2 is the best 
option, with the lowest total inventory cost of Rp. 
9,927,682 and a service level of 98.66% (Table 6). 
 
3.7. Discussion 

The simulation results show that the developed 
scenarios focus primarily on increasing supply to meet 
demand. While effective in improving service levels and 
reducing costs, this approach also highlights the 
continued importance of the existing inventory system. 
The inventory system plays a key role in preventing 
expirations, but its limited ability to handle demand 
variability is evident from the shortages observed in the 
initial model. Therefore, the inventory system needs 
improvement beyond increasing supply, such as 
incorporating reorder points or safety stock policies 
based on simulation results to better respond to 
fluctuations. 

The use of Monte Carlo simulation offers 
advantages over traditional probabilistic methods by 
allowing more flexible, data-driven modeling of 
uncertainty without relying on rigid probability formulas. 
This provides more realistic and adaptable decision 
support for inventory management under uncertainty. 

Compared to prior studies, this research has a 
narrower focus on a single-unit inventory system. 
Ahmadimanesh et al. (2023) addressed a broader multi-
level inventory and distribution network with integrated 
routing optimization, while Efendi & Zahmi (2023) 
applied Monte Carlo simulation mainly to estimate 
optimal supply levels. In contrast, this study emphasizes 
scenario-based supply and inventory management 
using empirical data, offering a practical approach for 
localized decision-making. 
 
4. CONCLUSION 

The Monte Carlo simulation analysis of PRC 
inventory at PMI Banyumas showed that increasing 
supply from other units by 55 units and raising donor 
numbers by 15% reduced shortages from 62 to 5 units 
without increasing expiration while keeping costs at Rp. 
9,927,682. PMI Banyumas can implement this strategy 
through donor campaigns, incentives, and partnerships 
with local organizations. Future studies should explore 
the long-term effects of these strategies, seasonal 
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demand variations, and the integration of AI or 
behavioral factors to develop more adaptive and 
sustainable blood inventory systems. Ethical approval 
was obtained from PMI Banyumas for this research. 
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